File size: 40,780 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 |
#![allow(clippy::too_many_arguments)]
use crate::curve::CubicSplines;
use dyn_any::DynAny;
use graphene_core::Node;
use graphene_core::blending::BlendMode;
use graphene_core::color::Color;
use graphene_core::color::Pixel;
use graphene_core::context::Ctx;
use graphene_core::gradient::GradientStops;
use graphene_core::raster::image::Image;
use graphene_core::raster_types::{CPU, Raster, RasterDataTable};
use graphene_core::registry::types::{Angle, Percentage, SignedPercentage};
use std::cmp::Ordering;
use std::fmt::Debug;
// TODO: Implement the following:
// Color Balance
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27blnc%27%20%3D%20Color%20Balance
//
// Photo Filter
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27phfl%27%20%3D%20Photo%20Filter
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=of%20the%20file.-,Photo%20Filter,-Key%20is%20%27phfl
//
// Color Lookup
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27clrL%27%20%3D%20Color%20Lookup
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=Color%20Lookup%20(Photoshop%20CS6
#[derive(Debug, Default, Clone, Copy, Eq, PartialEq, DynAny, Hash, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Dropdown)]
pub enum LuminanceCalculation {
#[default]
#[label("sRGB")]
SRGB,
Perceptual,
AverageChannels,
MinimumChannels,
MaximumChannels,
}
#[node_macro::node(category("Raster: Adjustment"))]
fn luminance<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
luminance_calc: LuminanceCalculation,
) -> T {
input.adjust(|color| {
let luminance = match luminance_calc {
LuminanceCalculation::SRGB => color.luminance_srgb(),
LuminanceCalculation::Perceptual => color.luminance_perceptual(),
LuminanceCalculation::AverageChannels => color.average_rgb_channels(),
LuminanceCalculation::MinimumChannels => color.minimum_rgb_channels(),
LuminanceCalculation::MaximumChannels => color.maximum_rgb_channels(),
};
color.map_rgb(|_| luminance)
});
input
}
#[node_macro::node(category("Raster: Channels"))]
fn extract_channel<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
channel: RedGreenBlueAlpha,
) -> T {
input.adjust(|color| {
let extracted_value = match channel {
RedGreenBlueAlpha::Red => color.r(),
RedGreenBlueAlpha::Green => color.g(),
RedGreenBlueAlpha::Blue => color.b(),
RedGreenBlueAlpha::Alpha => color.a(),
};
color.map_rgb(|_| extracted_value).with_alpha(1.)
});
input
}
#[node_macro::node(category("Raster: Channels"))]
fn make_opaque<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
) -> T {
input.adjust(|color| {
if color.a() == 0. {
return color.with_alpha(1.);
}
Color::from_rgbaf32(color.r() / color.a(), color.g() / color.a(), color.b() / color.a(), 1.).unwrap()
});
input
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27brit%27%20%3D%20Brightness/Contrast
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=Padding-,Brightness%20and%20Contrast,-Key%20is%20%27brit
//
// Some further analysis available at:
// https://geraldbakker.nl/psnumbers/brightness-contrast.html
#[node_macro::node(name("Brightness/Contrast"), category("Raster: Adjustment"), properties("brightness_contrast_properties"))]
fn brightness_contrast<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
brightness: SignedPercentage,
contrast: SignedPercentage,
use_classic: bool,
) -> T {
if use_classic {
let brightness = brightness as f32 / 255.;
let contrast = contrast as f32 / 100.;
let contrast = if contrast > 0. { (contrast * std::f32::consts::FRAC_PI_2 - 0.01).tan() } else { contrast };
let offset = brightness * contrast + brightness - contrast / 2.;
input.adjust(|color| color.to_gamma_srgb().map_rgb(|c| (c + c * contrast + offset).clamp(0., 1.)).to_linear_srgb());
return input;
}
const WINDOW_SIZE: usize = 1024;
// Brightness LUT
let brightness_is_negative = brightness < 0.;
// We clamp the brightness before the two curve X-axis points `130 - brightness * 26` and `233 - brightness * 48` intersect.
// Beyond the point of intersection, the cubic spline fitting becomes invalid and fails an assertion, which we need to avoid.
// See the intersection of the red lines at x = 103/22*100 = 468.18182 in the graph: https://www.desmos.com/calculator/ekvz4zyd9c
let brightness = (brightness.abs() / 100.).min(103. / 22. - 0.00001) as f32;
let brightness_curve_points = CubicSplines {
x: [0., 130. - brightness * 26., 233. - brightness * 48., 255.].map(|x| x / 255.),
y: [0., 130. + brightness * 51., 233. + brightness * 10., 255.].map(|x| x / 255.),
};
let brightness_curve_solutions = brightness_curve_points.solve();
let mut brightness_lut: [f32; WINDOW_SIZE] = std::array::from_fn(|i| {
let x = i as f32 / (WINDOW_SIZE as f32 - 1.);
brightness_curve_points.interpolate(x, &brightness_curve_solutions)
});
// Special handling for when brightness is negative
if brightness_is_negative {
brightness_lut = std::array::from_fn(|i| {
let mut x = i;
while x > 1 && brightness_lut[x] > i as f32 / WINDOW_SIZE as f32 {
x -= 1;
}
x as f32 / WINDOW_SIZE as f32
});
}
// Contrast LUT
// Unlike with brightness, the X-axis points `64` and `192` don't intersect at any contrast value, because they are constants.
// So we don't have to worry about clamping the contrast value to avoid invalid cubic spline fitting.
// See the graph: https://www.desmos.com/calculator/iql9vsca56
let contrast = contrast as f32 / 100.;
let contrast_curve_points = CubicSplines {
x: [0., 64., 192., 255.].map(|x| x / 255.),
y: [0., 64. - contrast * 30., 192. + contrast * 30., 255.].map(|x| x / 255.),
};
let contrast_curve_solutions = contrast_curve_points.solve();
let contrast_lut: [f32; WINDOW_SIZE] = std::array::from_fn(|i| {
let x = i as f32 / (WINDOW_SIZE as f32 - 1.);
contrast_curve_points.interpolate(x, &contrast_curve_solutions)
});
// Composed brightness and contrast LUTs
let combined_lut = brightness_lut.map(|brightness| {
let index_in_contrast_lut = (brightness * (contrast_lut.len() - 1) as f32).round() as usize;
contrast_lut[index_in_contrast_lut]
});
let lut_max = (combined_lut.len() - 1) as f32;
input.adjust(|color| color.to_gamma_srgb().map_rgb(|c| combined_lut[(c * lut_max).round() as usize]).to_linear_srgb());
input
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=levl%27%20%3D%20Levels
//
// Algorithm from:
// https://stackoverflow.com/questions/39510072/algorithm-for-adjustment-of-image-levels
//
// Some further analysis available at:
// https://geraldbakker.nl/psnumbers/levels.html
#[node_macro::node(category("Raster: Adjustment"))]
fn levels<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
#[default(0.)] shadows: Percentage,
#[default(50.)] midtones: Percentage,
#[default(100.)] highlights: Percentage,
#[default(0.)] output_minimums: Percentage,
#[default(100.)] output_maximums: Percentage,
) -> T {
image.adjust(|color| {
let color = color.to_gamma_srgb();
// Input Range (Range: 0-1)
let input_shadows = (shadows / 100.) as f32;
let input_midtones = (midtones / 100.) as f32;
let input_highlights = (highlights / 100.) as f32;
// Output Range (Range: 0-1)
let output_minimums = (output_minimums / 100.) as f32;
let output_maximums = (output_maximums / 100.) as f32;
// Midtones interpolation factor between minimums and maximums (Range: 0-1)
let midtones = output_minimums + (output_maximums - output_minimums) * input_midtones;
// Gamma correction (Range: 0.01-10)
let gamma = if midtones < 0.5 {
// Range: 0-1
let x = 1. - midtones * 2.;
// Range: 1-10
1. + 9. * x
} else {
// Range: 0-0.5
let x = 1. - midtones;
// Range: 0-1
let x = x * 2.;
// Range: 0.01-1
x.max(0.01)
};
// Input levels (Range: 0-1)
let highlights_minus_shadows = (input_highlights - input_shadows).clamp(f32::EPSILON, 1.);
let color = color.map_rgb(|c| ((c - input_shadows).max(0.) / highlights_minus_shadows).min(1.));
// Midtones (Range: 0-1)
let color = color.gamma(gamma);
// Output levels (Range: 0-1)
let color = color.map_rgb(|c| c * (output_maximums - output_minimums) + output_minimums);
color.to_linear_srgb()
});
image
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27blwh%27%20%3D%20Black%20and%20White
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=Black%20White%20(Photoshop%20CS3)
//
// Algorithm from:
// https://stackoverflow.com/a/55233732/775283
// Works the same for gamma and linear color
#[node_macro::node(name("Black & White"), category("Raster: Adjustment"))]
async fn black_and_white<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
#[default(Color::BLACK)] tint: Color,
#[default(40.)]
#[range((-200., 300.))]
reds: Percentage,
#[default(60.)]
#[range((-200., 300.))]
yellows: Percentage,
#[default(40.)]
#[range((-200., 300.))]
greens: Percentage,
#[default(60.)]
#[range((-200., 300.))]
cyans: Percentage,
#[default(20.)]
#[range((-200., 300.))]
blues: Percentage,
#[default(80.)]
#[range((-200., 300.))]
magentas: Percentage,
) -> T {
image.adjust(|color| {
let color = color.to_gamma_srgb();
let reds = reds as f32 / 100.;
let yellows = yellows as f32 / 100.;
let greens = greens as f32 / 100.;
let cyans = cyans as f32 / 100.;
let blues = blues as f32 / 100.;
let magentas = magentas as f32 / 100.;
let gray_base = color.r().min(color.g()).min(color.b());
let red_part = color.r() - gray_base;
let green_part = color.g() - gray_base;
let blue_part = color.b() - gray_base;
let alpha_part = color.a();
let additional = if red_part == 0. {
let cyan_part = green_part.min(blue_part);
cyan_part * cyans + (green_part - cyan_part) * greens + (blue_part - cyan_part) * blues
} else if green_part == 0. {
let magenta_part = red_part.min(blue_part);
magenta_part * magentas + (red_part - magenta_part) * reds + (blue_part - magenta_part) * blues
} else {
let yellow_part = red_part.min(green_part);
yellow_part * yellows + (red_part - yellow_part) * reds + (green_part - yellow_part) * greens
};
let luminance = gray_base + additional;
// TODO: Fix "Color" blend mode implementation so it matches the expected behavior perfectly (it's currently close)
let color = tint.with_luminance(luminance);
let color = Color::from_rgbaf32(color.r(), color.g(), color.b(), alpha_part).unwrap();
color.to_linear_srgb()
});
image
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27hue%20%27%20%3D%20Old,saturation%2C%20Photoshop%205.0
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=0%20%3D%20Use%20other.-,Hue/Saturation,-Hue/Saturation%20settings
#[node_macro::node(name("Hue/Saturation"), category("Raster: Adjustment"))]
async fn hue_saturation<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
hue_shift: Angle,
saturation_shift: SignedPercentage,
lightness_shift: SignedPercentage,
) -> T {
input.adjust(|color| {
let color = color.to_gamma_srgb();
let [hue, saturation, lightness, alpha] = color.to_hsla();
let color = Color::from_hsla(
(hue + hue_shift as f32 / 360.) % 1.,
// TODO: Improve the way saturation works (it's slightly off)
(saturation + saturation_shift as f32 / 100.).clamp(0., 1.),
// TODO: Fix the way lightness works (it's very off)
(lightness + lightness_shift as f32 / 100.).clamp(0., 1.),
alpha,
);
color.to_linear_srgb()
});
input
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27%20%3D%20Color%20Lookup-,%27nvrt%27%20%3D%20Invert,-%27post%27%20%3D%20Posterize
#[node_macro::node(category("Raster: Adjustment"))]
async fn invert<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
) -> T {
input.adjust(|color| {
let color = color.to_gamma_srgb();
let color = color.map_rgb(|c| color.a() - c);
color.to_linear_srgb()
});
input
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=post%27%20%3D%20Posterize-,%27thrs%27%20%3D%20Threshold,-%27grdm%27%20%3D%20Gradient
#[node_macro::node(category("Raster: Adjustment"))]
async fn threshold<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
#[default(50.)] min_luminance: Percentage,
#[default(100.)] max_luminance: Percentage,
luminance_calc: LuminanceCalculation,
) -> T {
image.adjust(|color| {
let min_luminance = Color::srgb_to_linear(min_luminance as f32 / 100.);
let max_luminance = Color::srgb_to_linear(max_luminance as f32 / 100.);
let luminance = match luminance_calc {
LuminanceCalculation::SRGB => color.luminance_srgb(),
LuminanceCalculation::Perceptual => color.luminance_perceptual(),
LuminanceCalculation::AverageChannels => color.average_rgb_channels(),
LuminanceCalculation::MinimumChannels => color.minimum_rgb_channels(),
LuminanceCalculation::MaximumChannels => color.maximum_rgb_channels(),
};
if luminance >= min_luminance && luminance <= max_luminance { Color::WHITE } else { Color::BLACK }
});
image
}
trait Blend<P: Pixel> {
fn blend(&self, under: &Self, blend_fn: impl Fn(P, P) -> P) -> Self;
}
impl Blend<Color> for Color {
fn blend(&self, under: &Self, blend_fn: impl Fn(Color, Color) -> Color) -> Self {
blend_fn(*self, *under)
}
}
impl Blend<Color> for Option<Color> {
fn blend(&self, under: &Self, blend_fn: impl Fn(Color, Color) -> Color) -> Self {
match (self, under) {
(Some(a), Some(b)) => Some(blend_fn(*a, *b)),
(a, None) => *a,
(None, b) => *b,
}
}
}
impl Blend<Color> for RasterDataTable<CPU> {
fn blend(&self, under: &Self, blend_fn: impl Fn(Color, Color) -> Color) -> Self {
let mut result_table = self.clone();
for (over, under) in result_table.instance_mut_iter().zip(under.instance_ref_iter()) {
let data = over.instance.data.iter().zip(under.instance.data.iter()).map(|(a, b)| blend_fn(*a, *b)).collect();
*over.instance = Raster::new_cpu(Image {
data,
width: over.instance.width,
height: over.instance.height,
base64_string: None,
});
}
result_table
}
}
impl Blend<Color> for GradientStops {
fn blend(&self, under: &Self, blend_fn: impl Fn(Color, Color) -> Color) -> Self {
let mut combined_stops = self.iter().map(|(position, _)| position).chain(under.iter().map(|(position, _)| position)).collect::<Vec<_>>();
combined_stops.dedup_by(|&mut a, &mut b| (a - b).abs() < 1e-6);
combined_stops.sort_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal));
let stops = combined_stops
.into_iter()
.map(|&position| {
let over_color = self.evaluate(position);
let under_color = under.evaluate(position);
let color = blend_fn(over_color, under_color);
(position, color)
})
.collect::<Vec<_>>();
GradientStops::new(stops)
}
}
#[node_macro::node(category("Raster"))]
async fn blend<T: Blend<Color> + Send>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
over: T,
#[expose]
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
under: T,
blend_mode: BlendMode,
#[default(100.)] opacity: Percentage,
) -> T {
over.blend(&under, |a, b| blend_colors(a, b, blend_mode, opacity / 100.))
}
#[node_macro::node(category(""), skip_impl)]
fn blend_color_pair<BlendModeNode, OpacityNode>(input: (Color, Color), blend_mode: &'n BlendModeNode, opacity: &'n OpacityNode) -> Color
where
BlendModeNode: Node<'n, (), Output = BlendMode> + 'n,
OpacityNode: Node<'n, (), Output = Percentage> + 'n,
{
let blend_mode = blend_mode.eval(());
let opacity = opacity.eval(());
blend_colors(input.0, input.1, blend_mode, opacity / 100.)
}
pub fn apply_blend_mode(foreground: Color, background: Color, blend_mode: BlendMode) -> Color {
match blend_mode {
// Normal group
BlendMode::Normal => background.blend_rgb(foreground, Color::blend_normal),
// Darken group
BlendMode::Darken => background.blend_rgb(foreground, Color::blend_darken),
BlendMode::Multiply => background.blend_rgb(foreground, Color::blend_multiply),
BlendMode::ColorBurn => background.blend_rgb(foreground, Color::blend_color_burn),
BlendMode::LinearBurn => background.blend_rgb(foreground, Color::blend_linear_burn),
BlendMode::DarkerColor => background.blend_darker_color(foreground),
// Lighten group
BlendMode::Lighten => background.blend_rgb(foreground, Color::blend_lighten),
BlendMode::Screen => background.blend_rgb(foreground, Color::blend_screen),
BlendMode::ColorDodge => background.blend_rgb(foreground, Color::blend_color_dodge),
BlendMode::LinearDodge => background.blend_rgb(foreground, Color::blend_linear_dodge),
BlendMode::LighterColor => background.blend_lighter_color(foreground),
// Contrast group
BlendMode::Overlay => foreground.blend_rgb(background, Color::blend_hardlight),
BlendMode::SoftLight => background.blend_rgb(foreground, Color::blend_softlight),
BlendMode::HardLight => background.blend_rgb(foreground, Color::blend_hardlight),
BlendMode::VividLight => background.blend_rgb(foreground, Color::blend_vivid_light),
BlendMode::LinearLight => background.blend_rgb(foreground, Color::blend_linear_light),
BlendMode::PinLight => background.blend_rgb(foreground, Color::blend_pin_light),
BlendMode::HardMix => background.blend_rgb(foreground, Color::blend_hard_mix),
// Inversion group
BlendMode::Difference => background.blend_rgb(foreground, Color::blend_difference),
BlendMode::Exclusion => background.blend_rgb(foreground, Color::blend_exclusion),
BlendMode::Subtract => background.blend_rgb(foreground, Color::blend_subtract),
BlendMode::Divide => background.blend_rgb(foreground, Color::blend_divide),
// Component group
BlendMode::Hue => background.blend_hue(foreground),
BlendMode::Saturation => background.blend_saturation(foreground),
BlendMode::Color => background.blend_color(foreground),
BlendMode::Luminosity => background.blend_luminosity(foreground),
// Other utility blend modes (hidden from the normal list) - do not have alpha blend
_ => panic!("Used blend mode without alpha blend"),
}
}
trait Adjust<P> {
fn adjust(&mut self, map_fn: impl Fn(&P) -> P);
}
impl Adjust<Color> for Color {
fn adjust(&mut self, map_fn: impl Fn(&Color) -> Color) {
*self = map_fn(self);
}
}
impl Adjust<Color> for Option<Color> {
fn adjust(&mut self, map_fn: impl Fn(&Color) -> Color) {
if let Some(v) = self {
*v = map_fn(v)
}
}
}
impl Adjust<Color> for GradientStops {
fn adjust(&mut self, map_fn: impl Fn(&Color) -> Color) {
for (_pos, c) in self.iter_mut() {
*c = map_fn(c);
}
}
}
impl Adjust<Color> for RasterDataTable<CPU> {
fn adjust(&mut self, map_fn: impl Fn(&Color) -> Color) {
for instance in self.instance_mut_iter() {
for c in instance.instance.data_mut().data.iter_mut() {
*c = map_fn(c);
}
}
}
}
#[inline(always)]
pub fn blend_colors(foreground: Color, background: Color, blend_mode: BlendMode, opacity: f64) -> Color {
let target_color = match blend_mode {
// Other utility blend modes (hidden from the normal list) - do not have alpha blend
BlendMode::Erase => return background.alpha_subtract(foreground),
BlendMode::Restore => return background.alpha_add(foreground),
BlendMode::MultiplyAlpha => return background.alpha_multiply(foreground),
blend_mode => apply_blend_mode(foreground, background, blend_mode),
};
background.alpha_blend(target_color.to_associated_alpha(opacity as f32))
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27grdm%27%20%3D%20Gradient%20Map
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=Gradient%20settings%20(Photoshop%206.0)
#[node_macro::node(category("Raster: Adjustment"))]
async fn gradient_map<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
gradient: GradientStops,
reverse: bool,
) -> T {
image.adjust(|color| {
let intensity = color.luminance_srgb();
let intensity = if reverse { 1. - intensity } else { intensity };
gradient.evaluate(intensity as f64).to_linear_srgb()
});
image
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27-,vibA%27%20%3D%20Vibrance,-%27hue%20%27%20%3D%20Old
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=Vibrance%20(Photoshop%20CS3)
//
// Algorithm based on:
// https://stackoverflow.com/questions/33966121/what-is-the-algorithm-for-vibrance-filters
// The results of this implementation are very close to correct, but not quite perfect.
//
// Some further analysis available at:
// https://www.photo-mark.com/notes/analyzing-photoshop-vibrance-and-saturation/
//
// This algorithm is currently lacking a "Saturation" parameter which is needed for interoperability.
// It's not the same as the saturation component of Hue/Saturation/Value. Vibrance and Saturation are both separable.
// When both parameters are set, it is equivalent to running this adjustment twice, with only vibrance set and then only saturation set.
// (Except for some noise probably due to rounding error.)
#[node_macro::node(category("Raster: Adjustment"))]
async fn vibrance<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
vibrance: SignedPercentage,
) -> T {
image.adjust(|color| {
let vibrance = vibrance as f32 / 100.;
// Slow the effect down by half when it's negative, since artifacts begin appearing past -50%.
// So this scales the 0% to -50% range to 0% to -100%.
let slowed_vibrance = if vibrance >= 0. { vibrance } else { vibrance * 0.5 };
let channel_max = color.r().max(color.g()).max(color.b());
let channel_min = color.r().min(color.g()).min(color.b());
let channel_difference = channel_max - channel_min;
let scale_multiplier = if channel_max == color.r() {
let green_blue_difference = (color.g() - color.b()).abs();
let t = (green_blue_difference / channel_difference).min(1.);
t * 0.5 + 0.5
} else {
1.
};
let scale = slowed_vibrance * scale_multiplier * (2. - channel_difference);
let channel_reduction = channel_min * scale;
let scale = 1. + scale * (1. - channel_difference);
let luminance_initial = color.to_linear_srgb().luminance_srgb();
let altered_color = color.map_rgb(|c| c * scale - channel_reduction).to_linear_srgb();
let luminance = altered_color.luminance_srgb();
let altered_color = altered_color.map_rgb(|c| c * luminance_initial / luminance);
let channel_max = altered_color.r().max(altered_color.g()).max(altered_color.b());
let altered_color = if Color::linear_to_srgb(channel_max) > 1. {
let scale = (1. - luminance) / (channel_max - luminance);
altered_color.map_rgb(|c| (c - luminance) * scale + luminance)
} else {
altered_color
};
let altered_color = altered_color.to_gamma_srgb();
if vibrance >= 0. {
altered_color
} else {
// TODO: The result ends up a bit darker than it should be, further investigation is needed
let luminance = color.luminance_rec_601();
// Near -0% vibrance we mostly use `altered_color`.
// Near -100% vibrance, we mostly use half the desaturated luminance color and half `altered_color`.
let factor = -slowed_vibrance;
altered_color.map_rgb(|c| c * (1. - factor) + luminance * factor)
}
});
image
}
/// Color Channel
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Radio)]
pub enum RedGreenBlue {
#[default]
Red,
Green,
Blue,
}
/// Color Channel
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Radio)]
pub enum RedGreenBlueAlpha {
#[default]
Red,
Green,
Blue,
Alpha,
}
/// Style of noise pattern
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Dropdown)]
pub enum NoiseType {
#[default]
Perlin,
#[label("OpenSimplex2")]
OpenSimplex2,
#[label("OpenSimplex2S")]
OpenSimplex2S,
Cellular,
ValueCubic,
Value,
WhiteNoise,
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
/// Style of layered levels of the noise pattern
pub enum FractalType {
#[default]
None,
#[label("Fractional Brownian Motion")]
FBm,
Ridged,
PingPong,
#[label("Progressive (Domain Warp Only)")]
DomainWarpProgressive,
#[label("Independent (Domain Warp Only)")]
DomainWarpIndependent,
}
/// Distance function used by the cellular noise
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
pub enum CellularDistanceFunction {
#[default]
Euclidean,
#[label("Euclidean Squared (Faster)")]
EuclideanSq,
Manhattan,
Hybrid,
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
pub enum CellularReturnType {
CellValue,
#[default]
#[label("Nearest (F1)")]
Nearest,
#[label("Next Nearest (F2)")]
NextNearest,
#[label("Average (F1 / 2 + F2 / 2)")]
Average,
#[label("Difference (F2 - F1)")]
Difference,
#[label("Product (F2 * F1 / 2)")]
Product,
#[label("Division (F1 / F2)")]
Division,
}
/// Type of domain warp
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Dropdown)]
pub enum DomainWarpType {
#[default]
None,
#[label("OpenSimplex2")]
OpenSimplex2,
#[label("OpenSimplex2 Reduced")]
OpenSimplex2Reduced,
BasicGrid,
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27mixr%27%20%3D%20Channel%20Mixer
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=Lab%20color%20only-,Channel%20Mixer,-Key%20is%20%27mixr
#[node_macro::node(category("Raster: Adjustment"), properties("channel_mixer_properties"))]
async fn channel_mixer<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
monochrome: bool,
#[default(40.)]
#[name("Red")]
monochrome_r: f64,
#[default(40.)]
#[name("Green")]
monochrome_g: f64,
#[default(20.)]
#[name("Blue")]
monochrome_b: f64,
#[default(0.)]
#[name("Constant")]
monochrome_c: f64,
#[default(100.)]
#[name("(Red) Red")]
red_r: f64,
#[default(0.)]
#[name("(Red) Green")]
red_g: f64,
#[default(0.)]
#[name("(Red) Blue")]
red_b: f64,
#[default(0.)]
#[name("(Red) Constant")]
red_c: f64,
#[default(0.)]
#[name("(Green) Red")]
green_r: f64,
#[default(100.)]
#[name("(Green) Green")]
green_g: f64,
#[default(0.)]
#[name("(Green) Blue")]
green_b: f64,
#[default(0.)]
#[name("(Green) Constant")]
green_c: f64,
#[default(0.)]
#[name("(Blue) Red")]
blue_r: f64,
#[default(0.)]
#[name("(Blue) Green")]
blue_g: f64,
#[default(100.)]
#[name("(Blue) Blue")]
blue_b: f64,
#[default(0.)]
#[name("(Blue) Constant")]
blue_c: f64,
// Display-only properties (not used within the node)
_output_channel: RedGreenBlue,
) -> T {
image.adjust(|color| {
let color = color.to_gamma_srgb();
let (r, g, b, a) = color.components();
let color = if monochrome {
let (monochrome_r, monochrome_g, monochrome_b, monochrome_c) = (monochrome_r as f32 / 100., monochrome_g as f32 / 100., monochrome_b as f32 / 100., monochrome_c as f32 / 100.);
let gray = (r * monochrome_r + g * monochrome_g + b * monochrome_b + monochrome_c).clamp(0., 1.);
Color::from_rgbaf32_unchecked(gray, gray, gray, a)
} else {
let (red_r, red_g, red_b, red_c) = (red_r as f32 / 100., red_g as f32 / 100., red_b as f32 / 100., red_c as f32 / 100.);
let (green_r, green_g, green_b, green_c) = (green_r as f32 / 100., green_g as f32 / 100., green_b as f32 / 100., green_c as f32 / 100.);
let (blue_r, blue_g, blue_b, blue_c) = (blue_r as f32 / 100., blue_g as f32 / 100., blue_b as f32 / 100., blue_c as f32 / 100.);
let red = (r * red_r + g * red_g + b * red_b + red_c).clamp(0., 1.);
let green = (r * green_r + g * green_g + b * green_b + green_c).clamp(0., 1.);
let blue = (r * blue_r + g * blue_g + b * blue_b + blue_c).clamp(0., 1.);
Color::from_rgbaf32_unchecked(red, green, blue, a)
};
color.to_linear_srgb()
});
image
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
#[widget(Radio)]
pub enum RelativeAbsolute {
#[default]
Relative,
Absolute,
}
#[repr(C)]
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, DynAny, node_macro::ChoiceType, specta::Type, serde::Serialize, serde::Deserialize)]
pub enum SelectiveColorChoice {
#[default]
Reds,
Yellows,
Greens,
Cyans,
Blues,
Magentas,
#[menu_separator]
Whites,
Neutrals,
Blacks,
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=%27selc%27%20%3D%20Selective%20color
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=from%20%2D100...100.%20.-,Selective%20Color,-Selective%20Color%20settings
//
// Algorithm based on:
// https://blog.pkh.me/p/22-understanding-selective-coloring-in-adobe-photoshop.html
#[node_macro::node(category("Raster: Adjustment"), properties("selective_color_properties"))]
async fn selective_color<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
mode: RelativeAbsolute,
#[name("(Reds) Cyan")] r_c: f64,
#[name("(Reds) Magenta")] r_m: f64,
#[name("(Reds) Yellow")] r_y: f64,
#[name("(Reds) Black")] r_k: f64,
#[name("(Yellows) Cyan")] y_c: f64,
#[name("(Yellows) Magenta")] y_m: f64,
#[name("(Yellows) Yellow")] y_y: f64,
#[name("(Yellows) Black")] y_k: f64,
#[name("(Greens) Cyan")] g_c: f64,
#[name("(Greens) Magenta")] g_m: f64,
#[name("(Greens) Yellow")] g_y: f64,
#[name("(Greens) Black")] g_k: f64,
#[name("(Cyans) Cyan")] c_c: f64,
#[name("(Cyans) Magenta")] c_m: f64,
#[name("(Cyans) Yellow")] c_y: f64,
#[name("(Cyans) Black")] c_k: f64,
#[name("(Blues) Cyan")] b_c: f64,
#[name("(Blues) Magenta")] b_m: f64,
#[name("(Blues) Yellow")] b_y: f64,
#[name("(Blues) Black")] b_k: f64,
#[name("(Magentas) Cyan")] m_c: f64,
#[name("(Magentas) Magenta")] m_m: f64,
#[name("(Magentas) Yellow")] m_y: f64,
#[name("(Magentas) Black")] m_k: f64,
#[name("(Whites) Cyan")] w_c: f64,
#[name("(Whites) Magenta")] w_m: f64,
#[name("(Whites) Yellow")] w_y: f64,
#[name("(Whites) Black")] w_k: f64,
#[name("(Neutrals) Cyan")] n_c: f64,
#[name("(Neutrals) Magenta")] n_m: f64,
#[name("(Neutrals) Yellow")] n_y: f64,
#[name("(Neutrals) Black")] n_k: f64,
#[name("(Blacks) Cyan")] k_c: f64,
#[name("(Blacks) Magenta")] k_m: f64,
#[name("(Blacks) Yellow")] k_y: f64,
#[name("(Blacks) Black")] k_k: f64,
_colors: SelectiveColorChoice,
) -> T {
image.adjust(|color| {
let color = color.to_gamma_srgb();
let (r, g, b, a) = color.components();
let min = |a: f32, b: f32, c: f32| a.min(b).min(c);
let max = |a: f32, b: f32, c: f32| a.max(b).max(c);
let med = |a: f32, b: f32, c: f32| a + b + c - min(a, b, c) - max(a, b, c);
let max_channel = max(r, g, b);
let min_channel = min(r, g, b);
let pixel_color_range = |choice| match choice {
SelectiveColorChoice::Reds => max_channel == r,
SelectiveColorChoice::Yellows => min_channel == b,
SelectiveColorChoice::Greens => max_channel == g,
SelectiveColorChoice::Cyans => min_channel == r,
SelectiveColorChoice::Blues => max_channel == b,
SelectiveColorChoice::Magentas => min_channel == g,
SelectiveColorChoice::Whites => r > 0.5 && g > 0.5 && b > 0.5,
SelectiveColorChoice::Neutrals => r > 0. && g > 0. && b > 0. && r < 1. && g < 1. && b < 1.,
SelectiveColorChoice::Blacks => r < 0.5 && g < 0.5 && b < 0.5,
};
let color_parameter_group_scale_factor_rgb = max(r, g, b) - med(r, g, b);
let color_parameter_group_scale_factor_cmy = med(r, g, b) - min(r, g, b);
// Used to apply the r, g, or b channel slope (by multiplying it by 1) in relative mode, or no slope (by multiplying it by 0) in absolute mode
let (slope_r, slope_g, slope_b) = match mode {
RelativeAbsolute::Relative => (r - 1., g - 1., b - 1.),
RelativeAbsolute::Absolute => (-1., -1., -1.),
};
let (sum_r, sum_g, sum_b) = [
(SelectiveColorChoice::Reds, (r_c as f32, r_m as f32, r_y as f32, r_k as f32)),
(SelectiveColorChoice::Yellows, (y_c as f32, y_m as f32, y_y as f32, y_k as f32)),
(SelectiveColorChoice::Greens, (g_c as f32, g_m as f32, g_y as f32, g_k as f32)),
(SelectiveColorChoice::Cyans, (c_c as f32, c_m as f32, c_y as f32, c_k as f32)),
(SelectiveColorChoice::Blues, (b_c as f32, b_m as f32, b_y as f32, b_k as f32)),
(SelectiveColorChoice::Magentas, (m_c as f32, m_m as f32, m_y as f32, m_k as f32)),
(SelectiveColorChoice::Whites, (w_c as f32, w_m as f32, w_y as f32, w_k as f32)),
(SelectiveColorChoice::Neutrals, (n_c as f32, n_m as f32, n_y as f32, n_k as f32)),
(SelectiveColorChoice::Blacks, (k_c as f32, k_m as f32, k_y as f32, k_k as f32)),
]
.into_iter()
.fold((0., 0., 0.), |acc, (color_parameter_group, (c, m, y, k))| {
// Skip this color parameter group...
// ...if it's unchanged from the default of zero offset on all CMYK parameters, or...
// ...if this pixel's color isn't in the range affected by this color parameter group
if (c < f32::EPSILON && m < f32::EPSILON && y < f32::EPSILON && k < f32::EPSILON) || (!pixel_color_range(color_parameter_group)) {
return acc;
}
let (c, m, y, k) = (c / 100., m / 100., y / 100., k / 100.);
let color_parameter_group_scale_factor = match color_parameter_group {
SelectiveColorChoice::Reds | SelectiveColorChoice::Greens | SelectiveColorChoice::Blues => color_parameter_group_scale_factor_rgb,
SelectiveColorChoice::Cyans | SelectiveColorChoice::Magentas | SelectiveColorChoice::Yellows => color_parameter_group_scale_factor_cmy,
SelectiveColorChoice::Whites => min(r, g, b) * 2. - 1.,
SelectiveColorChoice::Neutrals => 1. - ((max(r, g, b) - 0.5).abs() + (min(r, g, b) - 0.5).abs()),
SelectiveColorChoice::Blacks => 1. - max(r, g, b) * 2.,
};
let offset_r = ((c + k * (c + 1.)) * slope_r).clamp(-r, -r + 1.) * color_parameter_group_scale_factor;
let offset_g = ((m + k * (m + 1.)) * slope_g).clamp(-g, -g + 1.) * color_parameter_group_scale_factor;
let offset_b = ((y + k * (y + 1.)) * slope_b).clamp(-b, -b + 1.) * color_parameter_group_scale_factor;
(acc.0 + offset_r, acc.1 + offset_g, acc.2 + offset_b)
});
let color = Color::from_rgbaf32_unchecked((r + sum_r).clamp(0., 1.), (g + sum_g).clamp(0., 1.), (b + sum_b).clamp(0., 1.), a);
color.to_linear_srgb()
});
image
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=nvrt%27%20%3D%20Invert-,%27post%27%20%3D%20Posterize,-%27thrs%27%20%3D%20Threshold
//
// Algorithm based on:
// https://www.axiomx.com/posterize.htm
// This algorithm produces fully accurate output in relation to the industry standard.
#[node_macro::node(category("Raster: Adjustment"))]
async fn posterize<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
#[default(4)]
#[hard_min(2.)]
levels: u32,
) -> T {
input.adjust(|color| {
let color = color.to_gamma_srgb();
let levels = levels as f32;
let number_of_areas = levels.recip();
let size_of_areas = (levels - 1.).recip();
let channel = |channel: f32| (channel / number_of_areas).floor() * size_of_areas;
let color = color.map_rgb(channel);
color.to_linear_srgb()
});
input
}
// Aims for interoperable compatibility with:
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=curv%27%20%3D%20Curves-,%27expA%27%20%3D%20Exposure,-%27vibA%27%20%3D%20Vibrance
// https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/#:~:text=Flag%20(%20%3D%20128%20)-,Exposure,-Key%20is%20%27expA
//
// Algorithm based on:
// https://geraldbakker.nl/psnumbers/exposure.html
#[node_macro::node(category("Raster: Adjustment"), properties("exposure_properties"))]
async fn exposure<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut input: T,
exposure: f64,
offset: f64,
#[default(1.)]
#[range((0.01, 10.))]
#[hard_min(0.0001)]
gamma_correction: f64,
) -> T {
input.adjust(|color| {
let adjusted = color
// Exposure
.map_rgb(|c: f32| c * 2_f32.powf(exposure as f32))
// Offset
.map_rgb(|c: f32| c + offset as f32)
// Gamma correction
.gamma(gamma_correction as f32);
adjusted.map_rgb(|c: f32| c.clamp(0., 1.))
});
input
}
#[node_macro::node(category("Raster: Adjustment"))]
fn color_overlay<T: Adjust<Color>>(
_: impl Ctx,
#[implementations(
Color,
RasterDataTable<CPU>,
GradientStops,
)]
mut image: T,
#[default(Color::BLACK)] color: Color,
blend_mode: BlendMode,
#[default(100.)] opacity: Percentage,
) -> T {
let opacity = (opacity as f32 / 100.).clamp(0., 1.);
image.adjust(|pixel| {
let image = pixel.map_rgb(|channel| channel * (1. - opacity));
// The apply blend mode function divides rgb by the alpha channel for the background. This undoes that.
let associated_pixel = Color::from_rgbaf32_unchecked(pixel.r() * pixel.a(), pixel.g() * pixel.a(), pixel.b() * pixel.a(), pixel.a());
let overlay = apply_blend_mode(color, associated_pixel, blend_mode).map_rgb(|channel| channel * opacity);
Color::from_rgbaf32_unchecked(image.r() + overlay.r(), image.g() + overlay.g(), image.b() + overlay.b(), pixel.a())
});
image
}
// pub use index_node::IndexNode;
// mod index_node {
// use crate::raster::{Color, Image};
// use crate::Ctx;
// #[node_macro::node(category(""))]
// pub fn index<T: Default + Clone>(
// _: impl Ctx,
// #[implementations(Vec<Image<Color>>, Vec<Color>)]
// #[widget(ParsedWidgetOverride::Hidden)]
// input: Vec<T>,
// index: u32,
// ) -> T {
// if (index as usize) < input.len() {
// input[index as usize].clone()
// } else {
// warn!("The number of segments is {} but the requested segment is {}!", input.len(), index);
// Default::default()
// }
// }
// }
#[cfg(test)]
mod test {
use graphene_core::blending::BlendMode;
use graphene_core::color::Color;
use graphene_core::raster::image::Image;
use graphene_core::raster_types::{Raster, RasterDataTable};
#[tokio::test]
async fn color_overlay_multiply() {
let image_color = Color::from_rgbaf32_unchecked(0.7, 0.6, 0.5, 0.4);
let image = Image::new(1, 1, image_color);
// Color { red: 0., green: 1., blue: 0., alpha: 1. }
let overlay_color = Color::GREEN;
// 100% of the output should come from the multiplied value
let opacity = 100_f64;
let result = super::color_overlay((), RasterDataTable::new(Raster::new_cpu(image.clone())), overlay_color, BlendMode::Multiply, opacity);
let result = result.instance_ref_iter().next().unwrap().instance;
// The output should just be the original green and alpha channels (as we multiply them by 1 and other channels by 0)
assert_eq!(result.data[0], Color::from_rgbaf32_unchecked(0., image_color.g(), 0., image_color.a()));
}
}
|