File size: 9,505 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
use graphene_core::context::Ctx;
use graphene_core::raster::image::Image;
use graphene_core::raster_types::{CPU, Raster, RasterDataTable};
use graphene_core::registry::types::Percentage;
use image::{DynamicImage, GenericImage, GenericImageView, GrayImage, ImageBuffer, Luma, Rgba, RgbaImage};
use ndarray::{Array2, ArrayBase, Dim, OwnedRepr};
use std::cmp::{max, min};
#[node_macro::node(category("Raster: Filter"))]
async fn dehaze(_: impl Ctx, image_frame: RasterDataTable<CPU>, strength: Percentage) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default();
for mut image_frame_instance in image_frame.instance_iter() {
let image = image_frame_instance.instance;
// Prepare the image data for processing
let image_data = bytemuck::cast_vec(image.data.clone());
let image_buffer = image::Rgba32FImage::from_raw(image.width, image.height, image_data).expect("Failed to convert internal image format into image-rs data type.");
let dynamic_image: DynamicImage = image_buffer.into();
// Run the dehaze algorithm
let dehazed_dynamic_image = dehaze_image(dynamic_image, strength / 100.);
// Prepare the image data for returning
let buffer = dehazed_dynamic_image.to_rgba32f().into_raw();
let color_vec = bytemuck::cast_vec(buffer);
let dehazed_image = Image {
width: image.width,
height: image.height,
data: color_vec,
base64_string: None,
};
image_frame_instance.instance = Raster::new_cpu(dehazed_image);
image_frame_instance.source_node_id = None;
result_table.push(image_frame_instance);
}
result_table
}
// There is no real point in modifying these values because they do not change the final result all that much.
// The authors of the paper recommended using these values to get a reasonable balance of performance and quality.
const PATCH_SIZE: u32 = 15;
const TOP_PERCENT: f64 = 0.001;
const RADIUS: u32 = 60;
const EPSILON: f64 = 0.0001;
const TX: f32 = 0.1;
// Dehazing algorithm based on "Single Image Haze Removal Using Dark Channel Prior"
// Paper: <https://www.researchgate.net/publication/220182411_Single_Image_Haze_Removal_Using_Dark_Channel_Prior>
// TODO: Make this algorithm work with negative strength values
fn dehaze_image(image: DynamicImage, strength: f64) -> DynamicImage {
// TODO: Break out this pair of steps into its own node, with a memoize node which caches the pair of outputs, so the strength can be adjusted without recomputing these two steps.
let dark_channel = compute_dark_channel(&image);
let atmospheric_light = estimate_atmospheric_light(&image, &dark_channel);
let transmission_map = estimate_transmission_map(&image, &dark_channel, strength);
let refined_transmission_map = refine_transmission_map(&image, &transmission_map);
recover(&image, &refined_transmission_map, atmospheric_light)
}
fn compute_dark_channel(image: &DynamicImage) -> DynamicImage {
let (width, height) = image.dimensions();
let mut dark_channel = GrayImage::new(width, height);
let half_patch = PATCH_SIZE / 2;
for y in 0..height {
for x in 0..width {
let pixel = image.get_pixel(x, y);
let min_intensity = min(min(pixel[0], pixel[1]), pixel[2]);
dark_channel.put_pixel(x, y, Luma([min_intensity]));
}
}
let mut eroded_channel = RgbaImage::new(width, height);
for y in 0..height {
for x in 0..width {
let mut local_min = u8::MAX;
for dy in 0..PATCH_SIZE {
for dx in 0..PATCH_SIZE {
let nx = x as i32 + dx as i32 - half_patch as i32;
let ny = y as i32 + dy as i32 - half_patch as i32;
if nx >= 0 && nx < width as i32 && ny >= 0 && ny < height as i32 {
let intensity = dark_channel.get_pixel(nx as u32, ny as u32)[0];
if intensity < local_min {
local_min = intensity;
}
}
}
}
let alpha = image.get_pixel(x, y)[3];
eroded_channel.put_pixel(x, y, Rgba([local_min, local_min, local_min, alpha]));
}
}
DynamicImage::ImageRgba8(eroded_channel)
}
fn estimate_atmospheric_light(hazy: &DynamicImage, dark_channel: &DynamicImage) -> Rgba<u8> {
let (width, height) = hazy.dimensions();
let dark = dark_channel.to_luma_alpha8();
let total_pixels = (width * height) as usize;
let num_pixels = ((TOP_PERCENT / 100.) * total_pixels as f64).ceil() as usize;
let mut intensities: Vec<(u32, u32, f64)> = Vec::with_capacity(total_pixels);
for y in 0..height {
for x in 0..width {
let pixel = dark.get_pixel(x, y);
let intensity = pixel.0[0] as f64;
intensities.push((x, y, intensity))
}
}
intensities.sort_by(|a, b| b.2.partial_cmp(&a.2).unwrap());
let top_intensities = &intensities[..num_pixels];
let mut atm_sum = [0., 0., 0.];
for (x, y, _) in top_intensities {
let pixel = hazy.get_pixel(*x, *y);
atm_sum[0] += pixel[0] as f64;
atm_sum[1] += pixel[1] as f64;
atm_sum[2] += pixel[2] as f64;
}
let num_pixels = num_pixels as f64;
Rgba([(atm_sum[0] / num_pixels) as u8, (atm_sum[1] / num_pixels) as u8, (atm_sum[2] / num_pixels) as u8, 255])
}
fn estimate_transmission_map(image: &DynamicImage, dark_channel: &DynamicImage, omega: f64) -> DynamicImage {
let (width, height) = image.dimensions();
let mut transmission_map = RgbaImage::new(width, height);
for y in 0..height {
for x in 0..width {
let min_intensity = dark_channel.get_pixel(x, y).0[0] as f32 / 255.;
let transmission_value = 1. - omega * min_intensity as f64;
let alpha = image.get_pixel(x, y)[3];
transmission_map.put_pixel(
x,
y,
Rgba([(transmission_value * 255.) as u8, (transmission_value * 255.) as u8, (transmission_value * 255.) as u8, alpha]),
);
}
}
DynamicImage::ImageRgba8(transmission_map)
}
fn refine_transmission_map(img: &DynamicImage, transmission_map: &DynamicImage) -> DynamicImage {
let gray_image = img.to_luma8();
let normalized_gray_image: GrayImage = ImageBuffer::from_fn(gray_image.width(), gray_image.height(), |x, y| {
let pixel = gray_image.get_pixel(x, y);
let normalized_value = (pixel[0] as f64 / 255.) * 255.;
Luma([normalized_value as u8])
});
let normalized_gray_image = DynamicImage::ImageLuma8(normalized_gray_image);
guided_filter(&normalized_gray_image, transmission_map, RADIUS, EPSILON)
}
fn recover(im: &DynamicImage, t: &DynamicImage, a: Rgba<u8>) -> DynamicImage {
let (width, height) = im.dimensions();
let mut res = DynamicImage::new_rgba8(width, height);
let a = [a[0] as f32 / 255., a[1] as f32 / 255., a[2] as f32 / 255.];
for y in 0..height {
for x in 0..width {
let im_pixel = im.get_pixel(x, y).0;
let t_pixel = t.get_pixel(x, y).0;
let t_val = f32::max(t_pixel[0] as f32 / 255., TX);
let mut res_pixel = [0; 4];
for ind in 0..3 {
res_pixel[ind] = ((((im_pixel[ind] as f32 / 255. - a[ind]) / t_val) + a[ind]).clamp(0., 1.) * 255.) as u8;
}
res_pixel[3] = im_pixel[3];
res.put_pixel(x, y, Rgba(res_pixel));
}
}
res
}
fn guided_filter(guidance_img: &DynamicImage, input_img: &DynamicImage, r: u32, epsilon: f64) -> DynamicImage {
let (width, height) = guidance_img.dimensions();
let radius = r as i32;
let guidance_nd = image_to_ndarray(guidance_img);
let input_nd = image_to_ndarray(input_img);
let mean_guidance = box_filter(&guidance_nd, radius);
let mean_input = box_filter(&input_nd, radius);
let corr_guidance = box_filter(&(guidance_nd.clone() * guidance_nd.clone()), radius);
let corr_guidance_input = box_filter(&(guidance_nd.clone() * input_nd.clone()), radius);
let var_guidance = &corr_guidance - &(mean_guidance.clone() * mean_guidance.clone());
let cov_guidance_input = &corr_guidance_input - &(mean_guidance.clone() * mean_input.clone());
let a = &cov_guidance_input / &(var_guidance.clone() + epsilon);
let b = mean_input - &(a.clone() * mean_guidance);
let mean_a = box_filter(&a, radius);
let mean_b = box_filter(&b, radius);
let q = &mean_a * &guidance_nd + mean_b;
ndarray_to_image(&q, width, height)
}
fn box_filter(img: &Array2<f64>, radius: i32) -> Array2<f64> {
let (height, width) = img.dim();
let mut result = Array2::zeros((height, width));
let mut integral_image: ArrayBase<OwnedRepr<f64>, Dim<[usize; 2]>> = Array2::zeros((height + 1, width + 1));
// Compute integral image
for y in 0..height {
for x in 0..width {
integral_image[(y + 1, x + 1)] = img[(y, x)] + integral_image[(y, x + 1)] + integral_image[(y + 1, x)] - integral_image[(y, x)];
}
}
for y in 0..height {
for x in 0..width {
let y1 = max(0, y as i32 - radius) as usize;
let y2 = min(height as i32 - 1, y as i32 + radius) as usize;
let x1 = max(0, x as i32 - radius) as usize;
let x2 = min(width as i32 - 1, x as i32 + radius) as usize;
let area = (y2 - y1 + 1) as f64 * (x2 - x1 + 1) as f64;
result[(y, x)] = (integral_image[(y2 + 1, x2 + 1)] - integral_image[(y1, x2 + 1)] - integral_image[(y2 + 1, x1)] + integral_image[(y1, x1)]) / area;
}
}
result
}
fn image_to_ndarray(img: &DynamicImage) -> Array2<f64> {
let (width, height) = img.dimensions();
let mut array = Array2::zeros((height as usize, width as usize));
for (x, y, pixel) in img.pixels() {
let luminance = pixel.0[0] as f64 / 255.;
array[(y as usize, x as usize)] = luminance;
}
array
}
fn ndarray_to_image(array: &Array2<f64>, width: u32, height: u32) -> DynamicImage {
let mut img = DynamicImage::new_rgba8(width, height);
for ((y, x), &value) in array.indexed_iter() {
let clamped_value = (value * 255.).clamp(0., 255.) as u8;
img.put_pixel(x as u32, y as u32, Rgba([clamped_value, clamped_value, clamped_value, 255]));
}
img
}
|