File size: 20,821 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
use crate::adjustments::{CellularDistanceFunction, CellularReturnType, DomainWarpType, FractalType, NoiseType};
use dyn_any::DynAny;
use fastnoise_lite;
use glam::{DAffine2, DVec2, Vec2};
use graphene_core::blending::AlphaBlending;
use graphene_core::color::Color;
use graphene_core::color::{Alpha, AlphaMut, Channel, LinearChannel, Luminance, RGBMut};
use graphene_core::context::{Ctx, ExtractFootprint};
use graphene_core::instances::Instance;
use graphene_core::math::bbox::Bbox;
use graphene_core::raster::image::Image;
use graphene_core::raster::{Bitmap, BitmapMut};
use graphene_core::raster_types::{CPU, Raster, RasterDataTable};
use graphene_core::transform::Transform;
use rand::prelude::*;
use rand_chacha::ChaCha8Rng;
use std::fmt::Debug;
use std::hash::Hash;
#[derive(Debug, DynAny)]
pub enum Error {
IO(std::io::Error),
Image(::image::ImageError),
}
impl From<std::io::Error> for Error {
fn from(e: std::io::Error) -> Self {
Error::IO(e)
}
}
#[node_macro::node(category("Debug: Raster"))]
pub fn sample_image(ctx: impl ExtractFootprint + Clone + Send, image_frame: RasterDataTable<CPU>) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default();
for mut image_frame_instance in image_frame.instance_iter() {
let image_frame_transform = image_frame_instance.transform;
let image = image_frame_instance.instance;
// Resize the image using the image crate
let data = bytemuck::cast_vec(image.data.clone());
let footprint = ctx.footprint();
let viewport_bounds = footprint.viewport_bounds_in_local_space();
let image_bounds = Bbox::from_transform(image_frame_transform).to_axis_aligned_bbox();
let intersection = viewport_bounds.intersect(&image_bounds);
let image_size = DAffine2::from_scale(DVec2::new(image.width as f64, image.height as f64));
let size = intersection.size();
let size_px = image_size.transform_vector2(size).as_uvec2();
// If the image would not be visible, add nothing.
if size.x <= 0. || size.y <= 0. {
continue;
}
let image_buffer = ::image::Rgba32FImage::from_raw(image.width, image.height, data).expect("Failed to convert internal image format into image-rs data type.");
let dynamic_image: ::image::DynamicImage = image_buffer.into();
let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO);
let offset_px = image_size.transform_vector2(offset).as_uvec2();
let cropped = dynamic_image.crop_imm(offset_px.x, offset_px.y, size_px.x, size_px.y);
let viewport_resolution_x = footprint.transform.transform_vector2(DVec2::X * size.x).length();
let viewport_resolution_y = footprint.transform.transform_vector2(DVec2::Y * size.y).length();
let mut new_width = size_px.x;
let mut new_height = size_px.y;
// Only downscale the image for now
let resized = if new_width < image.width || new_height < image.height {
new_width = viewport_resolution_x as u32;
new_height = viewport_resolution_y as u32;
// TODO: choose filter based on quality requirements
cropped.resize_exact(new_width, new_height, ::image::imageops::Triangle)
} else {
cropped
};
let buffer = resized.to_rgba32f();
let buffer = buffer.into_raw();
let vec = bytemuck::cast_vec(buffer);
let image = Image {
width: new_width,
height: new_height,
data: vec,
base64_string: None,
};
// we need to adjust the offset if we truncate the offset calculation
let new_transform = image_frame_transform * DAffine2::from_translation(offset) * DAffine2::from_scale(size);
image_frame_instance.transform = new_transform;
image_frame_instance.source_node_id = None;
image_frame_instance.instance = Raster::new_cpu(image);
result_table.push(image_frame_instance)
}
result_table
}
#[node_macro::node(category("Raster: Channels"))]
pub fn combine_channels(
_: impl Ctx,
_primary: (),
#[expose] red: RasterDataTable<CPU>,
#[expose] green: RasterDataTable<CPU>,
#[expose] blue: RasterDataTable<CPU>,
#[expose] alpha: RasterDataTable<CPU>,
) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default();
let max_len = red.len().max(green.len()).max(blue.len()).max(alpha.len());
let red = red.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
let green = green.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
let blue = blue.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
let alpha = alpha.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len);
for (((red, green), blue), alpha) in red.zip(green).zip(blue).zip(alpha) {
// Turn any default zero-sized image instances into None
let red = red.filter(|i| i.instance.width > 0 && i.instance.height > 0);
let green = green.filter(|i| i.instance.width > 0 && i.instance.height > 0);
let blue = blue.filter(|i| i.instance.width > 0 && i.instance.height > 0);
let alpha = alpha.filter(|i| i.instance.width > 0 && i.instance.height > 0);
// Get this instance's transform and alpha blending mode from the first non-empty channel
let Some((transform, alpha_blending)) = [&red, &green, &blue, &alpha].iter().find_map(|i| i.as_ref()).map(|i| (i.transform, i.alpha_blending)) else {
continue;
};
// Get the common width and height of the channels, which must have equal dimensions
let channel_dimensions = [
red.as_ref().map(|r| (r.instance.width, r.instance.height)),
green.as_ref().map(|g| (g.instance.width, g.instance.height)),
blue.as_ref().map(|b| (b.instance.width, b.instance.height)),
alpha.as_ref().map(|a| (a.instance.width, a.instance.height)),
];
if channel_dimensions.iter().all(Option::is_none)
|| channel_dimensions
.iter()
.flatten()
.any(|&(x, y)| channel_dimensions.iter().flatten().any(|&(other_x, other_y)| x != other_x || y != other_y))
{
continue;
}
let Some(&(width, height)) = channel_dimensions.iter().flatten().next() else { continue };
// Create a new image for this instance output
let mut image = Image::new(width, height, Color::TRANSPARENT);
// Iterate over all pixels in the image and set the color channels
for y in 0..image.height() {
for x in 0..image.width() {
let image_pixel = image.get_pixel_mut(x, y).unwrap();
if let Some(r) = red.as_ref().and_then(|r| r.instance.get_pixel(x, y)) {
image_pixel.set_red(r.l().cast_linear_channel());
} else {
image_pixel.set_red(Channel::from_linear(0.));
}
if let Some(g) = green.as_ref().and_then(|g| g.instance.get_pixel(x, y)) {
image_pixel.set_green(g.l().cast_linear_channel());
} else {
image_pixel.set_green(Channel::from_linear(0.));
}
if let Some(b) = blue.as_ref().and_then(|b| b.instance.get_pixel(x, y)) {
image_pixel.set_blue(b.l().cast_linear_channel());
} else {
image_pixel.set_blue(Channel::from_linear(0.));
}
if let Some(a) = alpha.as_ref().and_then(|a| a.instance.get_pixel(x, y)) {
image_pixel.set_alpha(a.l().cast_linear_channel());
} else {
image_pixel.set_alpha(Channel::from_linear(1.));
}
}
}
// Add this instance to the result table
result_table.push(Instance {
instance: Raster::new_cpu(image),
transform,
alpha_blending,
source_node_id: None,
});
}
result_table
}
#[node_macro::node(category("Raster"))]
pub fn mask(
_: impl Ctx,
/// The image to be masked.
image: RasterDataTable<CPU>,
/// The stencil to be used for masking.
#[expose]
stencil: RasterDataTable<CPU>,
) -> RasterDataTable<CPU> {
// TODO: Support multiple stencil instances
let Some(stencil_instance) = stencil.instance_iter().next() else {
// No stencil provided so we return the original image
return image;
};
let stencil_size = DVec2::new(stencil_instance.instance.width as f64, stencil_instance.instance.height as f64);
let mut result_table = RasterDataTable::default();
for mut image_instance in image.instance_iter() {
let image_size = DVec2::new(image_instance.instance.width as f64, image_instance.instance.height as f64);
let mask_size = stencil_instance.transform.decompose_scale();
if mask_size == DVec2::ZERO {
continue;
}
// Transforms a point from the background image to the foreground image
let bg_to_fg = image_instance.transform * DAffine2::from_scale(1. / image_size);
let stencil_transform_inverse = stencil_instance.transform.inverse();
for y in 0..image_instance.instance.height {
for x in 0..image_instance.instance.width {
let image_point = DVec2::new(x as f64, y as f64);
let mask_point = bg_to_fg.transform_point2(image_point);
let local_mask_point = stencil_transform_inverse.transform_point2(mask_point);
let mask_point = stencil_instance.transform.transform_point2(local_mask_point.clamp(DVec2::ZERO, DVec2::ONE));
let mask_point = (DAffine2::from_scale(stencil_size) * stencil_instance.transform.inverse()).transform_point2(mask_point);
let image_pixel = image_instance.instance.data_mut().get_pixel_mut(x, y).unwrap();
let mask_pixel = stencil_instance.instance.sample(mask_point);
*image_pixel = image_pixel.multiplied_alpha(mask_pixel.l().cast_linear_channel());
}
}
result_table.push(image_instance);
}
result_table
}
#[node_macro::node(category(""))]
pub fn extend_image_to_bounds(_: impl Ctx, image: RasterDataTable<CPU>, bounds: DAffine2) -> RasterDataTable<CPU> {
let mut result_table = RasterDataTable::default();
for mut image_instance in image.instance_iter() {
let image_aabb = Bbox::unit().affine_transform(image_instance.transform).to_axis_aligned_bbox();
let bounds_aabb = Bbox::unit().affine_transform(bounds.transform()).to_axis_aligned_bbox();
if image_aabb.contains(bounds_aabb.start) && image_aabb.contains(bounds_aabb.end) {
result_table.push(image_instance);
continue;
}
let image_data = &image_instance.instance.data;
let (image_width, image_height) = (image_instance.instance.width, image_instance.instance.height);
if image_width == 0 || image_height == 0 {
for image_instance in empty_image((), bounds, Color::TRANSPARENT).instance_iter() {
result_table.push(image_instance);
}
continue;
}
let orig_image_scale = DVec2::new(image_width as f64, image_height as f64);
let layer_to_image_space = DAffine2::from_scale(orig_image_scale) * image_instance.transform.inverse();
let bounds_in_image_space = Bbox::unit().affine_transform(layer_to_image_space * bounds).to_axis_aligned_bbox();
let new_start = bounds_in_image_space.start.floor().min(DVec2::ZERO);
let new_end = bounds_in_image_space.end.ceil().max(orig_image_scale);
let new_scale = new_end - new_start;
// Copy over original image into enlarged image.
let mut new_image = Image::new(new_scale.x as u32, new_scale.y as u32, Color::TRANSPARENT);
let offset_in_new_image = (-new_start).as_uvec2();
for y in 0..image_height {
let old_start = y * image_width;
let new_start = (y + offset_in_new_image.y) * new_image.width + offset_in_new_image.x;
let old_row = &image_data[old_start as usize..(old_start + image_width) as usize];
let new_row = &mut new_image.data[new_start as usize..(new_start + image_width) as usize];
new_row.copy_from_slice(old_row);
}
// Compute new transform.
// let layer_to_new_texture_space = (DAffine2::from_scale(1. / new_scale) * DAffine2::from_translation(new_start) * layer_to_image_space).inverse();
let new_texture_to_layer_space = image_instance.transform * DAffine2::from_scale(1. / orig_image_scale) * DAffine2::from_translation(new_start) * DAffine2::from_scale(new_scale);
image_instance.instance = Raster::new_cpu(new_image);
image_instance.transform = new_texture_to_layer_space;
image_instance.source_node_id = None;
result_table.push(image_instance);
}
result_table
}
#[node_macro::node(category("Debug: Raster"))]
pub fn empty_image(_: impl Ctx, transform: DAffine2, color: Color) -> RasterDataTable<CPU> {
let width = transform.transform_vector2(DVec2::new(1., 0.)).length() as u32;
let height = transform.transform_vector2(DVec2::new(0., 1.)).length() as u32;
let image = Image::new(width, height, color);
let mut result_table = RasterDataTable::new(Raster::new_cpu(image));
let image_instance = result_table.get_mut(0).unwrap();
*image_instance.transform = transform;
*image_instance.alpha_blending = AlphaBlending::default();
// Callers of empty_image can safely unwrap on returned table
result_table
}
/// Constructs a raster image.
#[node_macro::node(category(""))]
pub fn image_value(_: impl Ctx, _primary: (), image: RasterDataTable<CPU>) -> RasterDataTable<CPU> {
image
}
#[node_macro::node(category("Raster: Pattern"))]
#[allow(clippy::too_many_arguments)]
pub fn noise_pattern(
ctx: impl ExtractFootprint + Ctx,
_primary: (),
clip: bool,
seed: u32,
scale: f64,
noise_type: NoiseType,
domain_warp_type: DomainWarpType,
domain_warp_amplitude: f64,
fractal_type: FractalType,
fractal_octaves: u32,
fractal_lacunarity: f64,
fractal_gain: f64,
fractal_weighted_strength: f64,
fractal_ping_pong_strength: f64,
cellular_distance_function: CellularDistanceFunction,
cellular_return_type: CellularReturnType,
cellular_jitter: f64,
) -> RasterDataTable<CPU> {
let footprint = ctx.footprint();
let viewport_bounds = footprint.viewport_bounds_in_local_space();
let mut size = viewport_bounds.size();
let mut offset = viewport_bounds.start;
if clip {
// TODO: Remove "clip" entirely (and its arbitrary 100x100 clipping square) once we have proper resolution-aware layer clipping
const CLIPPING_SQUARE_SIZE: f64 = 100.;
let image_bounds = Bbox::from_transform(DAffine2::from_scale(DVec2::splat(CLIPPING_SQUARE_SIZE))).to_axis_aligned_bbox();
let intersection = viewport_bounds.intersect(&image_bounds);
offset = (intersection.start - image_bounds.start).max(DVec2::ZERO);
size = intersection.size();
}
// If the image would not be visible, return an empty image
if size.x <= 0. || size.y <= 0. {
return RasterDataTable::default();
}
let footprint_scale = footprint.scale();
let width = (size.x * footprint_scale.x) as u32;
let height = (size.y * footprint_scale.y) as u32;
// All
let mut image = Image::new(width, height, Color::from_luminance(0.5));
let mut noise = fastnoise_lite::FastNoiseLite::with_seed(seed as i32);
noise.set_frequency(Some(1. / (scale as f32).max(f32::EPSILON)));
// Domain Warp
let domain_warp_type = match domain_warp_type {
DomainWarpType::None => None,
DomainWarpType::OpenSimplex2 => Some(fastnoise_lite::DomainWarpType::OpenSimplex2),
DomainWarpType::OpenSimplex2Reduced => Some(fastnoise_lite::DomainWarpType::OpenSimplex2Reduced),
DomainWarpType::BasicGrid => Some(fastnoise_lite::DomainWarpType::BasicGrid),
};
let domain_warp_active = domain_warp_type.is_some();
noise.set_domain_warp_type(domain_warp_type);
noise.set_domain_warp_amp(Some(domain_warp_amplitude as f32));
// Fractal
let noise_type = match noise_type {
NoiseType::Perlin => fastnoise_lite::NoiseType::Perlin,
NoiseType::OpenSimplex2 => fastnoise_lite::NoiseType::OpenSimplex2,
NoiseType::OpenSimplex2S => fastnoise_lite::NoiseType::OpenSimplex2S,
NoiseType::Cellular => fastnoise_lite::NoiseType::Cellular,
NoiseType::ValueCubic => fastnoise_lite::NoiseType::ValueCubic,
NoiseType::Value => fastnoise_lite::NoiseType::Value,
NoiseType::WhiteNoise => {
// TODO: Generate in layer space, not viewport space
let mut rng = ChaCha8Rng::seed_from_u64(seed as u64);
for y in 0..height {
for x in 0..width {
let pixel = image.get_pixel_mut(x, y).unwrap();
let luminance = rng.random_range(0.0..1.) as f32;
*pixel = Color::from_luminance(luminance);
}
}
let mut result = RasterDataTable::default();
result.push(Instance {
instance: Raster::new_cpu(image),
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size),
..Default::default()
});
return result;
}
};
noise.set_noise_type(Some(noise_type));
let fractal_type = match fractal_type {
FractalType::None => fastnoise_lite::FractalType::None,
FractalType::FBm => fastnoise_lite::FractalType::FBm,
FractalType::Ridged => fastnoise_lite::FractalType::Ridged,
FractalType::PingPong => fastnoise_lite::FractalType::PingPong,
FractalType::DomainWarpProgressive => fastnoise_lite::FractalType::DomainWarpProgressive,
FractalType::DomainWarpIndependent => fastnoise_lite::FractalType::DomainWarpIndependent,
};
noise.set_fractal_type(Some(fractal_type));
noise.set_fractal_octaves(Some(fractal_octaves as i32));
noise.set_fractal_lacunarity(Some(fractal_lacunarity as f32));
noise.set_fractal_gain(Some(fractal_gain as f32));
noise.set_fractal_weighted_strength(Some(fractal_weighted_strength as f32));
noise.set_fractal_ping_pong_strength(Some(fractal_ping_pong_strength as f32));
// Cellular
let cellular_distance_function = match cellular_distance_function {
CellularDistanceFunction::Euclidean => fastnoise_lite::CellularDistanceFunction::Euclidean,
CellularDistanceFunction::EuclideanSq => fastnoise_lite::CellularDistanceFunction::EuclideanSq,
CellularDistanceFunction::Manhattan => fastnoise_lite::CellularDistanceFunction::Manhattan,
CellularDistanceFunction::Hybrid => fastnoise_lite::CellularDistanceFunction::Hybrid,
};
let cellular_return_type = match cellular_return_type {
CellularReturnType::CellValue => fastnoise_lite::CellularReturnType::CellValue,
CellularReturnType::Nearest => fastnoise_lite::CellularReturnType::Distance,
CellularReturnType::NextNearest => fastnoise_lite::CellularReturnType::Distance2,
CellularReturnType::Average => fastnoise_lite::CellularReturnType::Distance2Add,
CellularReturnType::Difference => fastnoise_lite::CellularReturnType::Distance2Sub,
CellularReturnType::Product => fastnoise_lite::CellularReturnType::Distance2Mul,
CellularReturnType::Division => fastnoise_lite::CellularReturnType::Distance2Div,
};
noise.set_cellular_distance_function(Some(cellular_distance_function));
noise.set_cellular_return_type(Some(cellular_return_type));
noise.set_cellular_jitter(Some(cellular_jitter as f32));
let coordinate_offset = offset.as_vec2();
let scale = size.as_vec2() / Vec2::new(width as f32, height as f32);
// Calculate the noise for every pixel
for y in 0..height {
for x in 0..width {
let pixel = image.get_pixel_mut(x, y).unwrap();
let pos = Vec2::new(x as f32, y as f32);
let vec = pos * scale + coordinate_offset;
let (mut x, mut y) = (vec.x, vec.y);
if domain_warp_active && domain_warp_amplitude > 0. {
(x, y) = noise.domain_warp_2d(x, y);
}
let luminance = (noise.get_noise_2d(x, y) + 1.) * 0.5;
*pixel = Color::from_luminance(luminance);
}
}
let mut result = RasterDataTable::default();
result.push(Instance {
instance: Raster::new_cpu(image),
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size),
..Default::default()
});
result
}
#[node_macro::node(category("Raster: Pattern"))]
pub fn mandelbrot(ctx: impl ExtractFootprint + Send) -> RasterDataTable<CPU> {
let footprint = ctx.footprint();
let viewport_bounds = footprint.viewport_bounds_in_local_space();
let image_bounds = Bbox::from_transform(DAffine2::IDENTITY).to_axis_aligned_bbox();
let intersection = viewport_bounds.intersect(&image_bounds);
let size = intersection.size();
let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO);
// If the image would not be visible, return an empty image
if size.x <= 0. || size.y <= 0. {
return RasterDataTable::default();
}
let scale = footprint.scale();
let width = (size.x * scale.x) as u32;
let height = (size.y * scale.y) as u32;
let mut data = Vec::with_capacity(width as usize * height as usize);
let max_iter = 255;
let scale = 3. * size.as_vec2() / Vec2::new(width as f32, height as f32);
let coordinate_offset = offset.as_vec2() * 3. - Vec2::new(2., 1.5);
for y in 0..height {
for x in 0..width {
let pos = Vec2::new(x as f32, y as f32);
let c = pos * scale + coordinate_offset;
let iter = mandelbrot_impl(c, max_iter);
data.push(map_color(iter, max_iter));
}
}
let image = Image {
width,
height,
data,
..Default::default()
};
let mut result = RasterDataTable::default();
result.push(Instance {
instance: Raster::new_cpu(image),
transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size),
..Default::default()
});
result
}
#[inline(always)]
fn mandelbrot_impl(c: Vec2, max_iter: usize) -> usize {
let mut z = Vec2::new(0., 0.);
for i in 0..max_iter {
z = Vec2::new(z.x * z.x - z.y * z.y, 2. * z.x * z.y) + c;
if z.length_squared() > 4. {
return i;
}
}
max_iter
}
fn map_color(iter: usize, max_iter: usize) -> Color {
let v = iter as f32 / max_iter as f32;
Color::from_rgbaf32_unchecked(v, v, v, 1.)
}
|