openfree's picture
Deploy from GitHub repository
2409829 verified
use crate::parsing::{Implementation, ParsedField, ParsedNodeFn};
use proc_macro_error2::emit_error;
use quote::quote;
use syn::spanned::Spanned;
use syn::{GenericParam, Type};
pub fn validate_node_fn(parsed: &ParsedNodeFn) -> syn::Result<()> {
let validators: &[fn(&ParsedNodeFn)] = &[
// Add more validators here as needed
validate_implementations_for_generics,
validate_primary_input_expose,
validate_min_max,
];
for validator in validators {
validator(parsed);
}
Ok(())
}
fn validate_min_max(parsed: &ParsedNodeFn) {
for field in &parsed.fields {
if let ParsedField::Regular {
number_hard_max,
number_hard_min,
number_soft_max,
number_soft_min,
pat_ident,
..
} = field
{
if let (Some(soft_min), Some(hard_min)) = (number_soft_min, number_hard_min) {
let soft_min_value: f64 = soft_min.base10_parse().unwrap_or_default();
let hard_min_value: f64 = hard_min.base10_parse().unwrap_or_default();
if soft_min_value == hard_min_value {
emit_error!(
pat_ident.span(),
"Unnecessary #[soft_min] attribute on `{}`, as #[hard_min] has the same value.",
pat_ident.ident;
help = "You can safely remove the #[soft_min] attribute from this field.";
note = "#[soft_min] is redundant when it equals #[hard_min].",
);
} else if soft_min_value < hard_min_value {
emit_error!(
pat_ident.span(),
"The #[soft_min] attribute on `{}` is incorrectly greater than #[hard_min].",
pat_ident.ident;
help = "You probably meant to reverse the two attribute values.";
note = "Allowing the possible slider range to preceed #[hard_min] doesn't make sense.",
);
}
}
if let (Some(soft_max), Some(hard_max)) = (number_soft_max, number_hard_max) {
let soft_max_value: f64 = soft_max.base10_parse().unwrap_or_default();
let hard_max_value: f64 = hard_max.base10_parse().unwrap_or_default();
if soft_max_value == hard_max_value {
emit_error!(
pat_ident.span(),
"Unnecessary #[soft_max] attribute on `{}`, as #[hard_max] has the same value.",
pat_ident.ident;
help = "You can safely remove the #[soft_max] attribute from this field.";
note = "#[soft_max] is redundant when it equals #[hard_max].",
);
} else if soft_max_value < hard_max_value {
emit_error!(
pat_ident.span(),
"The #[soft_max] attribute on `{}` is incorrectly greater than #[hard_max].",
pat_ident.ident;
help = "You probably meant to reverse the two attribute values.";
note = "Allowing the possible slider range to exceed #[hard_max] doesn't make sense.",
);
}
}
}
}
}
fn validate_primary_input_expose(parsed: &ParsedNodeFn) {
if let Some(ParsedField::Regular { exposed: true, pat_ident, .. }) = parsed.fields.first() {
emit_error!(
pat_ident.span(),
"Unnecessary #[expose] attribute on primary input `{}`. Primary inputs are always exposed.",
pat_ident.ident;
help = "You can safely remove the #[expose] attribute from this field.";
note = "The function's second argument, `{}`, is the node's primary input and it's always exposed by default", pat_ident.ident
);
}
}
fn validate_implementations_for_generics(parsed: &ParsedNodeFn) {
let has_skip_impl = parsed.attributes.skip_impl;
if !has_skip_impl && !parsed.fn_generics.is_empty() {
for field in &parsed.fields {
match field {
ParsedField::Regular { ty, implementations, pat_ident, .. } => {
if contains_generic_param(ty, &parsed.fn_generics) && implementations.is_empty() {
emit_error!(
ty.span(),
"Generic type `{}` in field `{}` requires an #[implementations(...)] attribute",
quote!(#ty),
pat_ident.ident;
help = "Add #[implementations(ConcreteType1, ConcreteType2)] to field '{}'", pat_ident.ident;
help = "Or use #[skip_impl] if you want to manually implement the node"
);
}
}
ParsedField::Node {
input_type,
output_type,
implementations,
pat_ident,
..
} => {
if (contains_generic_param(input_type, &parsed.fn_generics) || contains_generic_param(output_type, &parsed.fn_generics)) && implementations.is_empty() {
emit_error!(
pat_ident.span(),
"Generic types in Node field `{}` require an #[implementations(...)] attribute",
pat_ident.ident;
help = "Add #[implementations(InputType1 -> OutputType1, InputType2 -> OutputType2)] to field '{}'", pat_ident.ident;
help = "Or use #[skip_impl] if you want to manually implement the node"
);
}
// Additional check for Node implementations
for impl_ in implementations {
validate_node_implementation(impl_, input_type, output_type, &parsed.fn_generics);
}
}
}
}
}
}
fn validate_node_implementation(impl_: &Implementation, input_type: &Type, output_type: &Type, fn_generics: &[GenericParam]) {
if contains_generic_param(&impl_.input, fn_generics) || contains_generic_param(&impl_.output, fn_generics) {
emit_error!(
impl_.input.span(),
"Implementation types `{}` and `{}` must be concrete, not generic",
quote!(#input_type), quote!(#output_type);
help = "Replace generic types with concrete types in the implementation"
);
}
}
fn contains_generic_param(ty: &Type, fn_generics: &[GenericParam]) -> bool {
struct GenericParamChecker<'a> {
fn_generics: &'a [GenericParam],
found: bool,
}
impl<'a> syn::visit::Visit<'a> for GenericParamChecker<'a> {
fn visit_ident(&mut self, ident: &'a syn::Ident) {
if self
.fn_generics
.iter()
.any(|param| if let GenericParam::Type(type_param) = param { type_param.ident == *ident } else { false })
{
self.found = true;
}
}
}
let mut checker = GenericParamChecker { fn_generics, found: false };
syn::visit::visit_type(&mut checker, ty);
checker.found
}