use crate::consts::{MAX_ABSOLUTE_DIFFERENCE, STRICT_MAX_ABSOLUTE_DIFFERENCE}; use crate::{ManipulatorGroup, Subpath}; use glam::{BVec2, DMat2, DVec2}; use std::fmt::Write; #[derive(Copy, Clone, PartialEq)] /// A structure which can be used to reference a particular point along a `Bezier`. /// Assuming a 2-dimensional Bezier is represented as a parametric curve defined by components `(x(f(t), y(f(t))))`, this structure defines variants for `f(t)`. /// - The `Parametric` variant represents the point calculated using the parametric equation of the curve at argument `t`. That is, `f(t) = t`. Speed along the curve's parametric form is not constant. `t` must lie in the range `[0, 1]`. /// - The `Euclidean` variant represents the point calculated at a distance ratio `t` along the arc length of the curve in the range `[0, 1]`. Speed is constant along the curve's arc length. /// - E.g. If `d` is the distance from the start point of a `Bezier` to a certain point along the curve, and `l` is the total arc length of the curve, that certain point lies at a distance ratio `t = d / l`. /// - All `Bezier` functions will implicitly convert a Euclidean [TValue] argument to a parametric `t`-value using binary search, computed within a particular error. That is, a point at distance ratio `t*`, /// satisfying `|t* - t| <= error`. The default error is `0.001`. Given this requires a lengthier calculation, it is not recommended to use the `Euclidean` or `EuclideanWithinError` variants frequently in computationally intensive tasks. /// - The `EuclideanWithinError` variant functions exactly as the `Euclidean` variant, but allows the `error` to be customized when computing `t` internally. pub enum TValue { Parametric(f64), Euclidean(f64), EuclideanWithinError { t: f64, error: f64 }, } #[derive(Copy, Clone, PartialEq)] pub enum TValueType { Parametric, Euclidean, } #[derive(Copy, Clone, PartialEq)] pub enum SubpathTValue { Parametric { segment_index: usize, t: f64 }, GlobalParametric(f64), Euclidean { segment_index: usize, t: f64 }, GlobalEuclidean(f64), EuclideanWithinError { segment_index: usize, t: f64, error: f64 }, GlobalEuclideanWithinError { t: f64, error: f64 }, } #[derive(Copy, Clone)] /// Represents the shape of the join between two segments of a path which meet at an angle. /// Bevel provides a flat connection, Miter provides a sharp connection, and Round provides a rounded connection. /// As defined in SVG: . pub enum Join { /// The join is a straight line between the end points of the offset path sides from the two connecting segments. Bevel, /// Optional f64 is the miter limit, which defaults to 4 if `None` or a value less than 1 is provided. /// The miter limit is used to prevent highly sharp angles from resulting in excessively long miter joins. /// If the miter limit is exceeded, the join will be converted to a bevel join. /// The value is the ratio of the miter length to the stroke width. /// When that ratio is greater than the miter limit, a bevel join is used instead. Miter(Option), /// The join is a circular arc between the end points of the offset path sides from the two connecting segments. Round, } #[derive(Copy, Clone)] /// Enum to represent the cap type at the ends of an outline /// As defined in SVG: . pub enum Cap { Butt, Round, Square, } /// Helper to perform the computation of a and c, where b is the provided point on the curve. /// Given the correct power of `t` and `(1-t)`, the computation is the same for quadratic and cubic cases. /// Relevant derivation and the definitions of a, b, and c can be found in [the projection identity section](https://pomax.github.io/bezierinfo/#abc) of Pomax's bezier curve primer. fn compute_abc_through_points(start_point: DVec2, point_on_curve: DVec2, end_point: DVec2, t_to_nth_power: f64, nth_power_of_one_minus_t: f64) -> [DVec2; 3] { let point_c_ratio = nth_power_of_one_minus_t / (t_to_nth_power + nth_power_of_one_minus_t); let c = point_c_ratio * start_point + (1. - point_c_ratio) * end_point; let ab_bc_ratio = (t_to_nth_power + nth_power_of_one_minus_t - 1.).abs() / (t_to_nth_power + nth_power_of_one_minus_t); let a = point_on_curve + (point_on_curve - c) / ab_bc_ratio; [a, point_on_curve, c] } /// Compute `a`, `b`, and `c` for a quadratic curve that fits the start, end and point on curve at `t`. /// The definition for the `a`, `b`, `c` points are defined in [the projection identity section](https://pomax.github.io/bezierinfo/#abc) of Pomax's bezier curve primer. pub fn compute_abc_for_quadratic_through_points(start_point: DVec2, point_on_curve: DVec2, end_point: DVec2, t: f64) -> [DVec2; 3] { let t_squared = t * t; let one_minus_t = 1. - t; let squared_one_minus_t = one_minus_t * one_minus_t; compute_abc_through_points(start_point, point_on_curve, end_point, t_squared, squared_one_minus_t) } /// Compute `a`, `b`, and `c` for a cubic curve that fits the start, end and point on curve at `t`. /// The definition for the `a`, `b`, `c` points are defined in [the projection identity section](https://pomax.github.io/bezierinfo/#abc) of Pomax's bezier curve primer. pub fn compute_abc_for_cubic_through_points(start_point: DVec2, point_on_curve: DVec2, end_point: DVec2, t: f64) -> [DVec2; 3] { let t_cubed = t * t * t; let one_minus_t = 1. - t; let cubed_one_minus_t = one_minus_t * one_minus_t * one_minus_t; compute_abc_through_points(start_point, point_on_curve, end_point, t_cubed, cubed_one_minus_t) } /// Find the roots of the linear equation `ax + b`. pub fn solve_linear(a: f64, b: f64) -> [Option; 3] { // There exist roots when `a` is not 0 if a.abs() > MAX_ABSOLUTE_DIFFERENCE { [Some(-b / a), None, None] } else { [None; 3] } } /// Find the roots of the linear equation `ax^2 + bx + c`. /// Precompute the `discriminant` (`b^2 - 4ac`) and `two_times_a` arguments prior to calling this function for efficiency purposes. pub fn solve_quadratic(discriminant: f64, two_times_a: f64, b: f64, c: f64) -> [Option; 3] { let mut roots = [None; 3]; if two_times_a.abs() <= STRICT_MAX_ABSOLUTE_DIFFERENCE { roots = solve_linear(b, c); } else if discriminant.abs() <= STRICT_MAX_ABSOLUTE_DIFFERENCE { roots[0] = Some(-b / (two_times_a)); } else if discriminant > 0. { let root_discriminant = discriminant.sqrt(); roots[0] = Some((-b + root_discriminant) / (two_times_a)); roots[1] = Some((-b - root_discriminant) / (two_times_a)); } roots } // TODO: Use an `impl Iterator` return type instead of a `Vec` /// Solve a cubic of the form `ax^3 + bx^2 + ct + d`. pub fn solve_cubic(a: f64, b: f64, c: f64, d: f64) -> [Option; 3] { if a.abs() <= STRICT_MAX_ABSOLUTE_DIFFERENCE { if b.abs() <= STRICT_MAX_ABSOLUTE_DIFFERENCE { // If both a and b are approximately 0, treat as a linear problem solve_linear(c, d) } else { // If a is approximately 0, treat as a quadratic problem let discriminant = c * c - 4. * b * d; solve_quadratic(discriminant, 2. * b, c, d) } } else { // https://momentsingraphics.de/CubicRoots.html let d_recip = a.recip(); const ONETHIRD: f64 = 1. / 3.; let scaled_c2 = b * (ONETHIRD * d_recip); let scaled_c1 = c * (ONETHIRD * d_recip); let scaled_c0 = d * d_recip; if !(scaled_c0.is_finite() && scaled_c1.is_finite() && scaled_c2.is_finite()) { // cubic coefficient is zero or nearly so. return solve_quadratic(c * c - 4. * b * d, 2. * b, c, d); } let (c0, c1, c2) = (scaled_c0, scaled_c1, scaled_c2); // (d0, d1, d2) is called "Delta" in article let d0 = (-c2).mul_add(c2, c1); let d1 = (-c1).mul_add(c2, c0); let d2 = c2 * c0 - c1 * c1; // d is called "Discriminant" let d = 4. * d0 * d2 - d1 * d1; // de is called "Depressed.x", Depressed.y = d0 let de = (-2. * c2).mul_add(d0, d1); if d < 0. { let sq = (-0.25 * d).sqrt(); let r = -0.5 * de; let t1 = (r + sq).cbrt() + (r - sq).cbrt(); [Some(t1 - c2), None, None] } else if d == 0. { let t1 = (-d0).sqrt().copysign(de); [Some(t1 - c2), Some(-2. * t1 - c2).filter(|&a| a != t1 - c2), None] } else { let th = d.sqrt().atan2(-de) * ONETHIRD; // (th_cos, th_sin) is called "CubicRoot" let (th_sin, th_cos) = th.sin_cos(); // (r0, r1, r2) is called "Root" let r0 = th_cos; let ss3 = th_sin * 3_f64.sqrt(); let r1 = 0.5 * (-th_cos + ss3); let r2 = 0.5 * (-th_cos - ss3); let t = 2. * (-d0).sqrt(); [Some(t.mul_add(r0, -c2)), Some(t.mul_add(r1, -c2)), Some(t.mul_add(r2, -c2))] } } } /// Determines if two rectangles have any overlap. The rectangles are represented by a pair of coordinates that designate the top left and bottom right corners (in a graphical coordinate system). pub fn do_rectangles_overlap(rectangle1: [DVec2; 2], rectangle2: [DVec2; 2]) -> bool { let [bottom_left1, top_right1] = rectangle1; let [bottom_left2, top_right2] = rectangle2; top_right1.x >= bottom_left2.x && top_right2.x >= bottom_left1.x && top_right2.y >= bottom_left1.y && top_right1.y >= bottom_left2.y } /// Determines if a point is completely inside a rectangle, which is represented as a pair of coordinates [top-left, bottom-right]. pub fn is_point_inside_rectangle(rect: [DVec2; 2], point: DVec2) -> bool { let [top_left, bottom_right] = rect; point.x > top_left.x && point.x < bottom_right.x && point.y > top_left.y && point.y < bottom_right.y } /// Determines if the inner rectangle is completely inside the outer rectangle. The rectangles are represented as pairs of coordinates [top-left, bottom-right]. pub fn is_rectangle_inside_other(inner: [DVec2; 2], outer: [DVec2; 2]) -> bool { is_point_inside_rectangle(outer, inner[0]) && is_point_inside_rectangle(outer, inner[1]) } /// Returns the intersection of two lines. The lines are given by a point on the line and its slope (represented by a vector). pub fn line_intersection(point1: DVec2, point1_slope_vector: DVec2, point2: DVec2, point2_slope_vector: DVec2) -> DVec2 { assert!(point1_slope_vector.normalize() != point2_slope_vector.normalize()); // Find the intersection when the first line is vertical if f64_compare(point1_slope_vector.x, 0., MAX_ABSOLUTE_DIFFERENCE) { let m2 = point2_slope_vector.y / point2_slope_vector.x; let b2 = point2.y - m2 * point2.x; DVec2::new(point1.x, point1.x * m2 + b2) } // Find the intersection when the second line is vertical else if f64_compare(point2_slope_vector.x, 0., MAX_ABSOLUTE_DIFFERENCE) { let m1 = point1_slope_vector.y / point1_slope_vector.x; let b1 = point1.y - m1 * point1.x; DVec2::new(point2.x, point2.x * m1 + b1) } // Find the intersection where neither line is vertical else { let m1 = point1_slope_vector.y / point1_slope_vector.x; let b1 = point1.y - m1 * point1.x; let m2 = point2_slope_vector.y / point2_slope_vector.x; let b2 = point2.y - m2 * point2.x; let intersection_x = (b2 - b1) / (m1 - m2); DVec2::new(intersection_x, intersection_x * m1 + b1) } } /// Check if 3 points are collinear. pub fn are_points_collinear(p1: DVec2, p2: DVec2, p3: DVec2) -> bool { let matrix = DMat2::from_cols(p1 - p2, p2 - p3); f64_compare(matrix.determinant() / 2., 0., MAX_ABSOLUTE_DIFFERENCE) } /// Compute the center of the circle that passes through all three provided points. The provided points cannot be collinear. pub fn compute_circle_center_from_points(p1: DVec2, p2: DVec2, p3: DVec2) -> Option { if are_points_collinear(p1, p2, p3) { return None; } let midpoint_a = p1.lerp(p2, 0.5); let midpoint_b = p2.lerp(p3, 0.5); let midpoint_c = p3.lerp(p1, 0.5); let tangent_a = (p1 - p2).perp(); let tangent_b = (p2 - p3).perp(); let tangent_c = (p3 - p1).perp(); let intersect_a_b = line_intersection(midpoint_a, tangent_a, midpoint_b, tangent_b); let intersect_b_c = line_intersection(midpoint_b, tangent_b, midpoint_c, tangent_c); let intersect_c_a = line_intersection(midpoint_c, tangent_c, midpoint_a, tangent_a); Some((intersect_a_b + intersect_b_c + intersect_c_a) / 3.) } /// Compare two `f64` numbers with a provided max absolute value difference. pub fn f64_compare(a: f64, b: f64, max_abs_diff: f64) -> bool { (a - b).abs() < max_abs_diff } /// Determine if an `f64` number is within a given range by using a max absolute value difference comparison. pub fn f64_approximately_in_range(value: f64, min: f64, max: f64, max_abs_diff: f64) -> bool { (min..=max).contains(&value) || f64_compare(value, min, max_abs_diff) || f64_compare(value, max, max_abs_diff) } /// Compare the two values in a `DVec2` independently with a provided max absolute value difference. pub fn dvec2_compare(a: DVec2, b: DVec2, max_abs_diff: f64) -> BVec2 { BVec2::new((a.x - b.x).abs() < max_abs_diff, (a.y - b.y).abs() < max_abs_diff) } /// Determine if the values in a `DVec2` are within a given range independently by using a max absolute value difference comparison. pub fn dvec2_approximately_in_range(point: DVec2, min_corner: DVec2, max_corner: DVec2, max_abs_diff: f64) -> BVec2 { (point.cmpge(min_corner) & point.cmple(max_corner)) | dvec2_compare(point, min_corner, max_abs_diff) | dvec2_compare(point, max_corner, max_abs_diff) } /// Calculate a new position for a point given its original position, a unit vector in the desired direction, and a distance to move it by. pub fn scale_point_from_direction_vector(point: DVec2, direction_unit_vector: DVec2, should_flip_direction: bool, distance: f64) -> DVec2 { let should_reverse_factor = if should_flip_direction { -1. } else { 1. }; point + distance * direction_unit_vector * should_reverse_factor } /// Scale a point by a given distance with respect to the provided origin. pub fn scale_point_from_origin(point: DVec2, origin: DVec2, should_flip_direction: bool, distance: f64) -> DVec2 { scale_point_from_direction_vector(point, (origin - point).normalize(), should_flip_direction, distance) } /// Computes the necessary details to form a circular join from `left` to `right`, along a circle around `center`. /// By default, the angle is assumed to be 180 degrees. pub fn compute_circular_subpath_details(left: DVec2, arc_point: DVec2, right: DVec2, center: DVec2, angle: Option) -> (DVec2, ManipulatorGroup, DVec2) { let center_to_arc_point = arc_point - center; // Based on https://pomax.github.io/bezierinfo/#circles_cubic let handle_offset_factor = if let Some(angle) = angle { 4. / 3. * (angle / 4.).tan() } else { 0.551784777779014 }; ( left - (left - center).perp() * handle_offset_factor, ManipulatorGroup::new( arc_point, Some(arc_point + center_to_arc_point.perp() * handle_offset_factor), Some(arc_point - center_to_arc_point.perp() * handle_offset_factor), ), right + (right - center).perp() * handle_offset_factor, ) } pub fn format_point(svg: &mut String, prefix: &str, x: f64, y: f64) -> std::fmt::Result { write!(svg, "{prefix}{:.6}", x)?; let trimmed_length = svg.trim_end_matches('0').trim_end_matches('.').len(); svg.truncate(trimmed_length); write!(svg, ",{:.6}", y)?; let trimmed_length = svg.trim_end_matches('0').trim_end_matches('.').len(); svg.truncate(trimmed_length); Ok(()) } #[cfg(test)] mod tests { use super::*; use crate::consts::MAX_ABSOLUTE_DIFFERENCE; use crate::{Bezier, EmptyId}; /// Compare vectors of `f64`s with a provided max absolute value difference. fn f64_compare_vector(a: Vec, b: Vec, max_abs_diff: f64) -> bool { a.len() == b.len() && a.into_iter().zip(b).all(|(a, b)| f64_compare(a, b, max_abs_diff)) } fn collect_roots(mut roots: [Option; 3]) -> Vec { roots.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap()); roots.into_iter().flatten().collect() } #[test] fn test_solve_linear() { // Line that is on the x-axis assert!(collect_roots(solve_linear(0., 0.)).is_empty()); // Line that is parallel to but not on the x-axis assert!(collect_roots(solve_linear(0., 1.)).is_empty()); // Line with a non-zero slope assert!(collect_roots(solve_linear(2., -8.)) == vec![4.]); } #[test] fn test_solve_cubic() { // discriminant == 0 let roots1 = collect_roots(solve_cubic(1., 0., 0., 0.)); assert!(roots1 == vec![0.]); let roots2 = collect_roots(solve_cubic(1., 3., 0., -4.)); assert!(roots2 == vec![-2., 1.]); // p == 0 let roots3 = collect_roots(solve_cubic(1., 0., 0., -1.)); assert!(roots3 == vec![1.]); // discriminant > 0 let roots4 = collect_roots(solve_cubic(1., 3., 0., 2.)); assert!(f64_compare_vector(roots4, vec![-3.196], MAX_ABSOLUTE_DIFFERENCE)); // discriminant < 0 let roots5 = collect_roots(solve_cubic(1., 3., 0., -1.)); assert!(f64_compare_vector(roots5, vec![-2.879, -0.653, 0.532], MAX_ABSOLUTE_DIFFERENCE)); // quadratic let roots6 = collect_roots(solve_cubic(0., 3., 0., -3.)); assert!(roots6 == vec![-1., 1.]); // linear let roots7 = collect_roots(solve_cubic(0., 0., 1., -1.)); assert!(roots7 == vec![1.]); } #[test] fn test_do_rectangles_overlap() { // Rectangles overlap assert!(do_rectangles_overlap([DVec2::new(0., 0.), DVec2::new(20., 20.)], [DVec2::new(10., 10.), DVec2::new(30., 20.)])); // Rectangles share a side assert!(do_rectangles_overlap([DVec2::new(0., 0.), DVec2::new(10., 10.)], [DVec2::new(10., 10.), DVec2::new(30., 30.)])); // Rectangle inside the other assert!(do_rectangles_overlap([DVec2::new(0., 0.), DVec2::new(10., 10.)], [DVec2::new(2., 2.), DVec2::new(6., 4.)])); // No overlap, rectangles are beside each other assert!(!do_rectangles_overlap([DVec2::new(0., 0.), DVec2::new(10., 10.)], [DVec2::new(20., 0.), DVec2::new(30., 10.)])); // No overlap, rectangles are above and below each other assert!(!do_rectangles_overlap([DVec2::new(0., 0.), DVec2::new(10., 10.)], [DVec2::new(0., 20.), DVec2::new(20., 30.)])); } #[test] fn test_is_rectangle_inside_other() { assert!(!is_rectangle_inside_other([DVec2::new(10., 10.), DVec2::new(50., 50.)], [DVec2::new(10., 10.), DVec2::new(50., 50.)])); assert!(is_rectangle_inside_other( [DVec2::new(10.01, 10.01), DVec2::new(49., 49.)], [DVec2::new(10., 10.), DVec2::new(50., 50.)] )); assert!(!is_rectangle_inside_other([DVec2::new(5., 5.), DVec2::new(50., 9.99)], [DVec2::new(10., 10.), DVec2::new(50., 50.)])); } #[test] fn test_find_intersection() { // y = 2x + 10 // y = 5x + 4 // intersect at (2, 14) let start1 = DVec2::new(0., 10.); let end1 = DVec2::new(0., 4.); let start_direction1 = DVec2::new(1., 2.); let end_direction1 = DVec2::new(1., 5.); assert!(line_intersection(start1, start_direction1, end1, end_direction1) == DVec2::new(2., 14.)); // y = x // y = -x + 8 // intersect at (4, 4) let start2 = DVec2::new(0., 0.); let end2 = DVec2::new(8., 0.); let start_direction2 = DVec2::new(1., 1.); let end_direction2 = DVec2::new(1., -1.); assert!(line_intersection(start2, start_direction2, end2, end_direction2) == DVec2::new(4., 4.)); } #[test] fn test_are_points_collinear() { assert!(are_points_collinear(DVec2::new(2., 4.), DVec2::new(6., 8.), DVec2::new(4., 6.))); assert!(!are_points_collinear(DVec2::new(1., 4.), DVec2::new(6., 8.), DVec2::new(4., 6.))); } #[test] fn test_compute_circle_center_from_points() { // 3/4 of unit circle let center1 = compute_circle_center_from_points(DVec2::new(0., 1.), DVec2::new(-1., 0.), DVec2::new(1., 0.)); assert_eq!(center1.unwrap(), DVec2::new(0., 0.)); // 1/4 of unit circle let center2 = compute_circle_center_from_points(DVec2::new(-1., 0.), DVec2::new(0., 1.), DVec2::new(1., 0.)); assert_eq!(center2.unwrap(), DVec2::new(0., 0.)); } }