#![allow(unused)] pub mod ast; mod constants; pub mod context; pub mod executer; pub mod parser; pub mod value; use ast::Unit; use context::{EvalContext, ValueMap}; use executer::EvalError; use parser::ParseError; use value::Value; pub fn evaluate(expression: &str) -> Result<(Result, Unit), ParseError> { let expr = ast::Node::try_parse_from_str(expression); let context = EvalContext::default(); expr.map(|(node, unit)| (node.eval(&context), unit)) } #[cfg(test)] mod tests { use super::*; use ast::Unit; use value::Number; const EPSILON: f64 = 1e-10_f64; macro_rules! test_end_to_end{ ($($name:ident: $input:expr_2021 => ($expected_value:expr_2021, $expected_unit:expr_2021)),* $(,)?) => { $( #[test] fn $name() { let expected_value = $expected_value; let expected_unit = $expected_unit; let expr = ast::Node::try_parse_from_str($input); let context = EvalContext::default(); let (actual_value, actual_unit) = expr.map(|(node, unit)| (node.eval(&context), unit)).unwrap(); let actual_value = actual_value.unwrap(); assert!(actual_unit == expected_unit, "Expected unit {:?} but found unit {:?}", expected_unit, actual_unit); let expected_value = expected_value.into(); match (actual_value, expected_value) { (Value::Number(Number::Complex(actual_c)), Value::Number(Number::Complex(expected_c))) => { assert!( (actual_c.re.is_infinite() && expected_c.re.is_infinite()) || (actual_c.re - expected_c.re).abs() < EPSILON, "Expected real part {}, but got {}", expected_c.re, actual_c.re ); assert!( (actual_c.im.is_infinite() && expected_c.im.is_infinite()) || (actual_c.im - expected_c.im).abs() < EPSILON, "Expected imaginary part {}, but got {}", expected_c.im, actual_c.im ); } (Value::Number(Number::Real(actual_f)), Value::Number(Number::Real(expected_f))) => { if actual_f.is_infinite() || expected_f.is_infinite() { assert!( actual_f.is_infinite() && expected_f.is_infinite() && actual_f == expected_f, "Expected infinite value {}, but got {}", expected_f, actual_f ); } else if actual_f.is_nan() || expected_f.is_nan() { assert!(actual_f.is_nan() && expected_f.is_nan(), "Expected NaN, but got {}", actual_f); } else { assert!((actual_f - expected_f).abs() < EPSILON, "Expected {}, but got {}", expected_f, actual_f); } } // Handle mismatched types _ => panic!("Mismatched types: expected {:?}, got {:?}", expected_value, actual_value), } } )* }; } test_end_to_end! { // Basic arithmetic and units infix_addition: "5 + 5" => (10., Unit::BASE_UNIT), infix_subtraction_units: "5m - 3m" => (2., Unit::LENGTH), infix_multiplication_units: "4s * 4s" => (16., Unit { length: 0, mass: 0, time: 2 }), infix_division_units: "8m/2s" => (4., Unit::VELOCITY), // Order of operations order_of_operations_negative_prefix: "-10 + 5" => (-5., Unit::BASE_UNIT), order_of_operations_add_multiply: "5+1*1+5" => (11., Unit::BASE_UNIT), order_of_operations_add_negative_multiply: "5+(-1)*1+5" => (9., Unit::BASE_UNIT), order_of_operations_sqrt: "sqrt25 + 11" => (16., Unit::BASE_UNIT), order_of_operations_sqrt_expression: "sqrt(25+11)" => (6., Unit::BASE_UNIT), // Parentheses and nested expressions parentheses_nested_multiply: "(5 + 3) * (2 + 6)" => (64., Unit::BASE_UNIT), parentheses_mixed_operations: "2 * (3 + 5 * (2 + 1))" => (36., Unit::BASE_UNIT), parentheses_divide_add_multiply: "10 / (2 + 3) + (7 * 2)" => (16., Unit::BASE_UNIT), // Square root and nested square root sqrt_chain_operations: "sqrt(16) + sqrt(9) * sqrt(4)" => (10., Unit::BASE_UNIT), sqrt_nested: "sqrt(sqrt(81))" => (3., Unit::BASE_UNIT), sqrt_divide_expression: "sqrt((25 + 11) / 9)" => (2., Unit::BASE_UNIT), // Mixed square root and units sqrt_multiply_units: "sqrt(16) * 2g + 5g" => (13., Unit::MASS), sqrt_add_multiply: "sqrt(49) - 1 + 2 * 3" => (12., Unit::BASE_UNIT), sqrt_addition_multiply: "(sqrt(36) + 2) * 2" => (16., Unit::BASE_UNIT), // Exponentiation exponent_single: "2^3" => (8., Unit::BASE_UNIT), exponent_mixed_operations: "2^3 + 4^2" => (24., Unit::BASE_UNIT), exponent_nested: "2^(3+1)" => (16., Unit::BASE_UNIT), // Operations with negative values negative_units_add_multiply: "-5s + (-3 * 2)s" => (-11., Unit::TIME), negative_nested_parentheses: "-(5 + 3 * (2 - 1))" => (-8., Unit::BASE_UNIT), negative_sqrt_addition: "-(sqrt(16) + sqrt(9))" => (-7., Unit::BASE_UNIT), multiply_sqrt_subtract: "5 * 2 + sqrt(16) / 2 - 3" => (9., Unit::BASE_UNIT), add_multiply_subtract_sqrt: "4 + 3 * (2 + 1) - sqrt(25)" => (8., Unit::BASE_UNIT), add_sqrt_subtract_nested_multiply: "10 + sqrt(64) - (5 * (2 + 1))" => (3., Unit::BASE_UNIT), // Mathematical constants constant_pi: "pi" => (std::f64::consts::PI, Unit::BASE_UNIT), constant_e: "e" => (std::f64::consts::E, Unit::BASE_UNIT), constant_phi: "phi" => (1.61803398875, Unit::BASE_UNIT), constant_tau: "tau" => (2.0 * std::f64::consts::PI, Unit::BASE_UNIT), constant_infinity: "inf" => (f64::INFINITY, Unit::BASE_UNIT), constant_infinity_symbol: "∞" => (f64::INFINITY, Unit::BASE_UNIT), multiply_pi: "2 * pi" => (2.0 * std::f64::consts::PI, Unit::BASE_UNIT), add_e_constant: "e + 1" => (std::f64::consts::E + 1.0, Unit::BASE_UNIT), multiply_phi_constant: "phi * 2" => (1.61803398875 * 2.0, Unit::BASE_UNIT), exponent_tau: "2^tau" => (2f64.powf(2.0 * std::f64::consts::PI), Unit::BASE_UNIT), infinity_subtract_large_number: "inf - 1000" => (f64::INFINITY, Unit::BASE_UNIT), // Trigonometric functions trig_sin_pi: "sin(pi)" => (0.0, Unit::BASE_UNIT), trig_cos_zero: "cos(0)" => (1.0, Unit::BASE_UNIT), trig_tan_pi_div_four: "tan(pi/4)" => (1.0, Unit::BASE_UNIT), trig_sin_tau: "sin(tau)" => (0.0, Unit::BASE_UNIT), trig_cos_tau_div_two: "cos(tau/2)" => (-1.0, Unit::BASE_UNIT), } }