use graphene_core::context::Ctx; use graphene_core::raster::image::Image; use graphene_core::raster_types::{CPU, Raster, RasterDataTable}; use graphene_core::registry::types::Percentage; use image::{DynamicImage, GenericImage, GenericImageView, GrayImage, ImageBuffer, Luma, Rgba, RgbaImage}; use ndarray::{Array2, ArrayBase, Dim, OwnedRepr}; use std::cmp::{max, min}; #[node_macro::node(category("Raster: Filter"))] async fn dehaze(_: impl Ctx, image_frame: RasterDataTable, strength: Percentage) -> RasterDataTable { let mut result_table = RasterDataTable::default(); for mut image_frame_instance in image_frame.instance_iter() { let image = image_frame_instance.instance; // Prepare the image data for processing let image_data = bytemuck::cast_vec(image.data.clone()); let image_buffer = image::Rgba32FImage::from_raw(image.width, image.height, image_data).expect("Failed to convert internal image format into image-rs data type."); let dynamic_image: DynamicImage = image_buffer.into(); // Run the dehaze algorithm let dehazed_dynamic_image = dehaze_image(dynamic_image, strength / 100.); // Prepare the image data for returning let buffer = dehazed_dynamic_image.to_rgba32f().into_raw(); let color_vec = bytemuck::cast_vec(buffer); let dehazed_image = Image { width: image.width, height: image.height, data: color_vec, base64_string: None, }; image_frame_instance.instance = Raster::new_cpu(dehazed_image); image_frame_instance.source_node_id = None; result_table.push(image_frame_instance); } result_table } // There is no real point in modifying these values because they do not change the final result all that much. // The authors of the paper recommended using these values to get a reasonable balance of performance and quality. const PATCH_SIZE: u32 = 15; const TOP_PERCENT: f64 = 0.001; const RADIUS: u32 = 60; const EPSILON: f64 = 0.0001; const TX: f32 = 0.1; // Dehazing algorithm based on "Single Image Haze Removal Using Dark Channel Prior" // Paper: // TODO: Make this algorithm work with negative strength values fn dehaze_image(image: DynamicImage, strength: f64) -> DynamicImage { // TODO: Break out this pair of steps into its own node, with a memoize node which caches the pair of outputs, so the strength can be adjusted without recomputing these two steps. let dark_channel = compute_dark_channel(&image); let atmospheric_light = estimate_atmospheric_light(&image, &dark_channel); let transmission_map = estimate_transmission_map(&image, &dark_channel, strength); let refined_transmission_map = refine_transmission_map(&image, &transmission_map); recover(&image, &refined_transmission_map, atmospheric_light) } fn compute_dark_channel(image: &DynamicImage) -> DynamicImage { let (width, height) = image.dimensions(); let mut dark_channel = GrayImage::new(width, height); let half_patch = PATCH_SIZE / 2; for y in 0..height { for x in 0..width { let pixel = image.get_pixel(x, y); let min_intensity = min(min(pixel[0], pixel[1]), pixel[2]); dark_channel.put_pixel(x, y, Luma([min_intensity])); } } let mut eroded_channel = RgbaImage::new(width, height); for y in 0..height { for x in 0..width { let mut local_min = u8::MAX; for dy in 0..PATCH_SIZE { for dx in 0..PATCH_SIZE { let nx = x as i32 + dx as i32 - half_patch as i32; let ny = y as i32 + dy as i32 - half_patch as i32; if nx >= 0 && nx < width as i32 && ny >= 0 && ny < height as i32 { let intensity = dark_channel.get_pixel(nx as u32, ny as u32)[0]; if intensity < local_min { local_min = intensity; } } } } let alpha = image.get_pixel(x, y)[3]; eroded_channel.put_pixel(x, y, Rgba([local_min, local_min, local_min, alpha])); } } DynamicImage::ImageRgba8(eroded_channel) } fn estimate_atmospheric_light(hazy: &DynamicImage, dark_channel: &DynamicImage) -> Rgba { let (width, height) = hazy.dimensions(); let dark = dark_channel.to_luma_alpha8(); let total_pixels = (width * height) as usize; let num_pixels = ((TOP_PERCENT / 100.) * total_pixels as f64).ceil() as usize; let mut intensities: Vec<(u32, u32, f64)> = Vec::with_capacity(total_pixels); for y in 0..height { for x in 0..width { let pixel = dark.get_pixel(x, y); let intensity = pixel.0[0] as f64; intensities.push((x, y, intensity)) } } intensities.sort_by(|a, b| b.2.partial_cmp(&a.2).unwrap()); let top_intensities = &intensities[..num_pixels]; let mut atm_sum = [0., 0., 0.]; for (x, y, _) in top_intensities { let pixel = hazy.get_pixel(*x, *y); atm_sum[0] += pixel[0] as f64; atm_sum[1] += pixel[1] as f64; atm_sum[2] += pixel[2] as f64; } let num_pixels = num_pixels as f64; Rgba([(atm_sum[0] / num_pixels) as u8, (atm_sum[1] / num_pixels) as u8, (atm_sum[2] / num_pixels) as u8, 255]) } fn estimate_transmission_map(image: &DynamicImage, dark_channel: &DynamicImage, omega: f64) -> DynamicImage { let (width, height) = image.dimensions(); let mut transmission_map = RgbaImage::new(width, height); for y in 0..height { for x in 0..width { let min_intensity = dark_channel.get_pixel(x, y).0[0] as f32 / 255.; let transmission_value = 1. - omega * min_intensity as f64; let alpha = image.get_pixel(x, y)[3]; transmission_map.put_pixel( x, y, Rgba([(transmission_value * 255.) as u8, (transmission_value * 255.) as u8, (transmission_value * 255.) as u8, alpha]), ); } } DynamicImage::ImageRgba8(transmission_map) } fn refine_transmission_map(img: &DynamicImage, transmission_map: &DynamicImage) -> DynamicImage { let gray_image = img.to_luma8(); let normalized_gray_image: GrayImage = ImageBuffer::from_fn(gray_image.width(), gray_image.height(), |x, y| { let pixel = gray_image.get_pixel(x, y); let normalized_value = (pixel[0] as f64 / 255.) * 255.; Luma([normalized_value as u8]) }); let normalized_gray_image = DynamicImage::ImageLuma8(normalized_gray_image); guided_filter(&normalized_gray_image, transmission_map, RADIUS, EPSILON) } fn recover(im: &DynamicImage, t: &DynamicImage, a: Rgba) -> DynamicImage { let (width, height) = im.dimensions(); let mut res = DynamicImage::new_rgba8(width, height); let a = [a[0] as f32 / 255., a[1] as f32 / 255., a[2] as f32 / 255.]; for y in 0..height { for x in 0..width { let im_pixel = im.get_pixel(x, y).0; let t_pixel = t.get_pixel(x, y).0; let t_val = f32::max(t_pixel[0] as f32 / 255., TX); let mut res_pixel = [0; 4]; for ind in 0..3 { res_pixel[ind] = ((((im_pixel[ind] as f32 / 255. - a[ind]) / t_val) + a[ind]).clamp(0., 1.) * 255.) as u8; } res_pixel[3] = im_pixel[3]; res.put_pixel(x, y, Rgba(res_pixel)); } } res } fn guided_filter(guidance_img: &DynamicImage, input_img: &DynamicImage, r: u32, epsilon: f64) -> DynamicImage { let (width, height) = guidance_img.dimensions(); let radius = r as i32; let guidance_nd = image_to_ndarray(guidance_img); let input_nd = image_to_ndarray(input_img); let mean_guidance = box_filter(&guidance_nd, radius); let mean_input = box_filter(&input_nd, radius); let corr_guidance = box_filter(&(guidance_nd.clone() * guidance_nd.clone()), radius); let corr_guidance_input = box_filter(&(guidance_nd.clone() * input_nd.clone()), radius); let var_guidance = &corr_guidance - &(mean_guidance.clone() * mean_guidance.clone()); let cov_guidance_input = &corr_guidance_input - &(mean_guidance.clone() * mean_input.clone()); let a = &cov_guidance_input / &(var_guidance.clone() + epsilon); let b = mean_input - &(a.clone() * mean_guidance); let mean_a = box_filter(&a, radius); let mean_b = box_filter(&b, radius); let q = &mean_a * &guidance_nd + mean_b; ndarray_to_image(&q, width, height) } fn box_filter(img: &Array2, radius: i32) -> Array2 { let (height, width) = img.dim(); let mut result = Array2::zeros((height, width)); let mut integral_image: ArrayBase, Dim<[usize; 2]>> = Array2::zeros((height + 1, width + 1)); // Compute integral image for y in 0..height { for x in 0..width { integral_image[(y + 1, x + 1)] = img[(y, x)] + integral_image[(y, x + 1)] + integral_image[(y + 1, x)] - integral_image[(y, x)]; } } for y in 0..height { for x in 0..width { let y1 = max(0, y as i32 - radius) as usize; let y2 = min(height as i32 - 1, y as i32 + radius) as usize; let x1 = max(0, x as i32 - radius) as usize; let x2 = min(width as i32 - 1, x as i32 + radius) as usize; let area = (y2 - y1 + 1) as f64 * (x2 - x1 + 1) as f64; result[(y, x)] = (integral_image[(y2 + 1, x2 + 1)] - integral_image[(y1, x2 + 1)] - integral_image[(y2 + 1, x1)] + integral_image[(y1, x1)]) / area; } } result } fn image_to_ndarray(img: &DynamicImage) -> Array2 { let (width, height) = img.dimensions(); let mut array = Array2::zeros((height as usize, width as usize)); for (x, y, pixel) in img.pixels() { let luminance = pixel.0[0] as f64 / 255.; array[(y as usize, x as usize)] = luminance; } array } fn ndarray_to_image(array: &Array2, width: u32, height: u32) -> DynamicImage { let mut img = DynamicImage::new_rgba8(width, height); for ((y, x), &value) in array.indexed_iter() { let clamped_value = (value * 255.).clamp(0., 255.) as u8; img.put_pixel(x as u32, y as u32, Rgba([clamped_value, clamped_value, clamped_value, 255])); } img }