use dyn_any::{DynAny, StaticType, StaticTypeSized}; use graphene_core::Node; use graphene_core::color::{Channel, Linear, LuminanceMut}; use std::hash::{Hash, Hasher}; use std::ops::{Add, Mul, Sub}; #[derive(Debug, Clone, PartialEq, DynAny, specta::Type, serde::Serialize, serde::Deserialize)] pub struct Curve { #[serde(rename = "manipulatorGroups")] pub manipulator_groups: Vec, #[serde(rename = "firstHandle")] pub first_handle: [f32; 2], #[serde(rename = "lastHandle")] pub last_handle: [f32; 2], } impl Default for Curve { fn default() -> Self { Self { manipulator_groups: vec![], first_handle: [0.2; 2], last_handle: [0.8; 2], } } } impl Hash for Curve { fn hash(&self, state: &mut H) { self.manipulator_groups.hash(state); [self.first_handle, self.last_handle].iter().flatten().for_each(|f| f.to_bits().hash(state)); } } #[derive(Debug, Clone, Copy, PartialEq, DynAny, specta::Type, serde::Serialize, serde::Deserialize)] pub struct CurveManipulatorGroup { pub anchor: [f32; 2], pub handles: [[f32; 2]; 2], } impl Hash for CurveManipulatorGroup { fn hash(&self, state: &mut H) { for c in self.handles.iter().chain([&self.anchor]).flatten() { c.to_bits().hash(state); } } } #[derive(Debug)] pub struct CubicSplines { pub x: [f32; 4], pub y: [f32; 4], } impl CubicSplines { pub fn solve(&self) -> [f32; 4] { let (x, y) = (&self.x, &self.y); // Build an augmented matrix to solve the system of equations using Gaussian elimination let mut augmented_matrix = [ [ 2. / (x[1] - x[0]), 1. / (x[1] - x[0]), 0., 0., // | 3. * (y[1] - y[0]) / ((x[1] - x[0]) * (x[1] - x[0])), ], [ 1. / (x[1] - x[0]), 2. * (1. / (x[1] - x[0]) + 1. / (x[2] - x[1])), 1. / (x[2] - x[1]), 0., // | 3. * ((y[1] - y[0]) / ((x[1] - x[0]) * (x[1] - x[0])) + (y[2] - y[1]) / ((x[2] - x[1]) * (x[2] - x[1]))), ], [ 0., 1. / (x[2] - x[1]), 2. * (1. / (x[2] - x[1]) + 1. / (x[3] - x[2])), 1. / (x[3] - x[2]), // | 3. * ((y[2] - y[1]) / ((x[2] - x[1]) * (x[2] - x[1])) + (y[3] - y[2]) / ((x[3] - x[2]) * (x[3] - x[2]))), ], [ 0., 0., 1. / (x[3] - x[2]), 2. / (x[3] - x[2]), // | 3. * (y[3] - y[2]) / ((x[3] - x[2]) * (x[3] - x[2])), ], ]; // Gaussian elimination: forward elimination for row in 0..4 { let pivot_row_index = (row..4) .max_by(|&a_row, &b_row| augmented_matrix[a_row][row].abs().partial_cmp(&augmented_matrix[b_row][row].abs()).unwrap_or(std::cmp::Ordering::Equal)) .unwrap(); // Swap the current row with the row that has the largest pivot element augmented_matrix.swap(row, pivot_row_index); // Eliminate the current column in all rows below the current one for row_below_current in row + 1..4 { assert!(augmented_matrix[row][row].abs() > f32::EPSILON); let scale_factor = augmented_matrix[row_below_current][row] / augmented_matrix[row][row]; for col in row..5 { augmented_matrix[row_below_current][col] -= augmented_matrix[row][col] * scale_factor } } } // Gaussian elimination: back substitution let mut solutions = [0.; 4]; for col in (0..4).rev() { assert!(augmented_matrix[col][col].abs() > f32::EPSILON); solutions[col] = augmented_matrix[col][4] / augmented_matrix[col][col]; for row in (0..col).rev() { augmented_matrix[row][4] -= augmented_matrix[row][col] * solutions[col]; augmented_matrix[row][col] = 0.; } } solutions } pub fn interpolate(&self, input: f32, solutions: &[f32]) -> f32 { if input <= self.x[0] { return self.y[0]; } if input >= self.x[self.x.len() - 1] { return self.y[self.x.len() - 1]; } // Find the segment that the input falls between let mut segment = 1; while self.x[segment] < input { segment += 1; } let segment_start = segment - 1; let segment_end = segment; // Calculate the output value using quadratic interpolation let input_value = self.x[segment_start]; let input_value_prev = self.x[segment_end]; let output_value = self.y[segment_start]; let output_value_prev = self.y[segment_end]; let solutions_value = solutions[segment_start]; let solutions_value_prev = solutions[segment_end]; let output_delta = solutions_value_prev * (input_value - input_value_prev) - (output_value - output_value_prev); let solution_delta = (output_value - output_value_prev) - solutions_value * (input_value - input_value_prev); let input_ratio = (input - input_value_prev) / (input_value - input_value_prev); let prev_output_ratio = (1. - input_ratio) * output_value_prev; let output_ratio = input_ratio * output_value; let quadratic_ratio = input_ratio * (1. - input_ratio) * (output_delta * (1. - input_ratio) + solution_delta * input_ratio); let result = prev_output_ratio + output_ratio + quadratic_ratio; result.clamp(0., 1.) } } pub struct ValueMapperNode { lut: Vec, } unsafe impl StaticType for ValueMapperNode { type Static = ValueMapperNode; } impl ValueMapperNode { pub const fn new(lut: Vec) -> Self { Self { lut } } } impl<'i, L: LuminanceMut + 'i> Node<'i, L> for ValueMapperNode where L::LuminanceChannel: Linear + Copy, L::LuminanceChannel: Add, L::LuminanceChannel: Sub, L::LuminanceChannel: Mul, { type Output = L; fn eval(&'i self, mut val: L) -> L { let luminance: f32 = val.luminance().to_linear(); let floating_sample_index = luminance * (self.lut.len() - 1) as f32; let index_in_lut = floating_sample_index.floor() as usize; let a = self.lut[index_in_lut]; let b = self.lut[(index_in_lut + 1).clamp(0, self.lut.len() - 1)]; let result = a.lerp(b, L::LuminanceChannel::from_linear(floating_sample_index.fract())); val.set_luminance(result); val } }