use crate::adjustments::{CellularDistanceFunction, CellularReturnType, DomainWarpType, FractalType, NoiseType}; use dyn_any::DynAny; use fastnoise_lite; use glam::{DAffine2, DVec2, Vec2}; use graphene_core::blending::AlphaBlending; use graphene_core::color::Color; use graphene_core::color::{Alpha, AlphaMut, Channel, LinearChannel, Luminance, RGBMut}; use graphene_core::context::{Ctx, ExtractFootprint}; use graphene_core::instances::Instance; use graphene_core::math::bbox::Bbox; use graphene_core::raster::image::Image; use graphene_core::raster::{Bitmap, BitmapMut}; use graphene_core::raster_types::{CPU, Raster, RasterDataTable}; use graphene_core::transform::Transform; use rand::prelude::*; use rand_chacha::ChaCha8Rng; use std::fmt::Debug; use std::hash::Hash; #[derive(Debug, DynAny)] pub enum Error { IO(std::io::Error), Image(::image::ImageError), } impl From for Error { fn from(e: std::io::Error) -> Self { Error::IO(e) } } #[node_macro::node(category("Debug: Raster"))] pub fn sample_image(ctx: impl ExtractFootprint + Clone + Send, image_frame: RasterDataTable) -> RasterDataTable { let mut result_table = RasterDataTable::default(); for mut image_frame_instance in image_frame.instance_iter() { let image_frame_transform = image_frame_instance.transform; let image = image_frame_instance.instance; // Resize the image using the image crate let data = bytemuck::cast_vec(image.data.clone()); let footprint = ctx.footprint(); let viewport_bounds = footprint.viewport_bounds_in_local_space(); let image_bounds = Bbox::from_transform(image_frame_transform).to_axis_aligned_bbox(); let intersection = viewport_bounds.intersect(&image_bounds); let image_size = DAffine2::from_scale(DVec2::new(image.width as f64, image.height as f64)); let size = intersection.size(); let size_px = image_size.transform_vector2(size).as_uvec2(); // If the image would not be visible, add nothing. if size.x <= 0. || size.y <= 0. { continue; } let image_buffer = ::image::Rgba32FImage::from_raw(image.width, image.height, data).expect("Failed to convert internal image format into image-rs data type."); let dynamic_image: ::image::DynamicImage = image_buffer.into(); let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO); let offset_px = image_size.transform_vector2(offset).as_uvec2(); let cropped = dynamic_image.crop_imm(offset_px.x, offset_px.y, size_px.x, size_px.y); let viewport_resolution_x = footprint.transform.transform_vector2(DVec2::X * size.x).length(); let viewport_resolution_y = footprint.transform.transform_vector2(DVec2::Y * size.y).length(); let mut new_width = size_px.x; let mut new_height = size_px.y; // Only downscale the image for now let resized = if new_width < image.width || new_height < image.height { new_width = viewport_resolution_x as u32; new_height = viewport_resolution_y as u32; // TODO: choose filter based on quality requirements cropped.resize_exact(new_width, new_height, ::image::imageops::Triangle) } else { cropped }; let buffer = resized.to_rgba32f(); let buffer = buffer.into_raw(); let vec = bytemuck::cast_vec(buffer); let image = Image { width: new_width, height: new_height, data: vec, base64_string: None, }; // we need to adjust the offset if we truncate the offset calculation let new_transform = image_frame_transform * DAffine2::from_translation(offset) * DAffine2::from_scale(size); image_frame_instance.transform = new_transform; image_frame_instance.source_node_id = None; image_frame_instance.instance = Raster::new_cpu(image); result_table.push(image_frame_instance) } result_table } #[node_macro::node(category("Raster: Channels"))] pub fn combine_channels( _: impl Ctx, _primary: (), #[expose] red: RasterDataTable, #[expose] green: RasterDataTable, #[expose] blue: RasterDataTable, #[expose] alpha: RasterDataTable, ) -> RasterDataTable { let mut result_table = RasterDataTable::default(); let max_len = red.len().max(green.len()).max(blue.len()).max(alpha.len()); let red = red.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); let green = green.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); let blue = blue.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); let alpha = alpha.instance_iter().map(Some).chain(std::iter::repeat(None)).take(max_len); for (((red, green), blue), alpha) in red.zip(green).zip(blue).zip(alpha) { // Turn any default zero-sized image instances into None let red = red.filter(|i| i.instance.width > 0 && i.instance.height > 0); let green = green.filter(|i| i.instance.width > 0 && i.instance.height > 0); let blue = blue.filter(|i| i.instance.width > 0 && i.instance.height > 0); let alpha = alpha.filter(|i| i.instance.width > 0 && i.instance.height > 0); // Get this instance's transform and alpha blending mode from the first non-empty channel let Some((transform, alpha_blending)) = [&red, &green, &blue, &alpha].iter().find_map(|i| i.as_ref()).map(|i| (i.transform, i.alpha_blending)) else { continue; }; // Get the common width and height of the channels, which must have equal dimensions let channel_dimensions = [ red.as_ref().map(|r| (r.instance.width, r.instance.height)), green.as_ref().map(|g| (g.instance.width, g.instance.height)), blue.as_ref().map(|b| (b.instance.width, b.instance.height)), alpha.as_ref().map(|a| (a.instance.width, a.instance.height)), ]; if channel_dimensions.iter().all(Option::is_none) || channel_dimensions .iter() .flatten() .any(|&(x, y)| channel_dimensions.iter().flatten().any(|&(other_x, other_y)| x != other_x || y != other_y)) { continue; } let Some(&(width, height)) = channel_dimensions.iter().flatten().next() else { continue }; // Create a new image for this instance output let mut image = Image::new(width, height, Color::TRANSPARENT); // Iterate over all pixels in the image and set the color channels for y in 0..image.height() { for x in 0..image.width() { let image_pixel = image.get_pixel_mut(x, y).unwrap(); if let Some(r) = red.as_ref().and_then(|r| r.instance.get_pixel(x, y)) { image_pixel.set_red(r.l().cast_linear_channel()); } else { image_pixel.set_red(Channel::from_linear(0.)); } if let Some(g) = green.as_ref().and_then(|g| g.instance.get_pixel(x, y)) { image_pixel.set_green(g.l().cast_linear_channel()); } else { image_pixel.set_green(Channel::from_linear(0.)); } if let Some(b) = blue.as_ref().and_then(|b| b.instance.get_pixel(x, y)) { image_pixel.set_blue(b.l().cast_linear_channel()); } else { image_pixel.set_blue(Channel::from_linear(0.)); } if let Some(a) = alpha.as_ref().and_then(|a| a.instance.get_pixel(x, y)) { image_pixel.set_alpha(a.l().cast_linear_channel()); } else { image_pixel.set_alpha(Channel::from_linear(1.)); } } } // Add this instance to the result table result_table.push(Instance { instance: Raster::new_cpu(image), transform, alpha_blending, source_node_id: None, }); } result_table } #[node_macro::node(category("Raster"))] pub fn mask( _: impl Ctx, /// The image to be masked. image: RasterDataTable, /// The stencil to be used for masking. #[expose] stencil: RasterDataTable, ) -> RasterDataTable { // TODO: Support multiple stencil instances let Some(stencil_instance) = stencil.instance_iter().next() else { // No stencil provided so we return the original image return image; }; let stencil_size = DVec2::new(stencil_instance.instance.width as f64, stencil_instance.instance.height as f64); let mut result_table = RasterDataTable::default(); for mut image_instance in image.instance_iter() { let image_size = DVec2::new(image_instance.instance.width as f64, image_instance.instance.height as f64); let mask_size = stencil_instance.transform.decompose_scale(); if mask_size == DVec2::ZERO { continue; } // Transforms a point from the background image to the foreground image let bg_to_fg = image_instance.transform * DAffine2::from_scale(1. / image_size); let stencil_transform_inverse = stencil_instance.transform.inverse(); for y in 0..image_instance.instance.height { for x in 0..image_instance.instance.width { let image_point = DVec2::new(x as f64, y as f64); let mask_point = bg_to_fg.transform_point2(image_point); let local_mask_point = stencil_transform_inverse.transform_point2(mask_point); let mask_point = stencil_instance.transform.transform_point2(local_mask_point.clamp(DVec2::ZERO, DVec2::ONE)); let mask_point = (DAffine2::from_scale(stencil_size) * stencil_instance.transform.inverse()).transform_point2(mask_point); let image_pixel = image_instance.instance.data_mut().get_pixel_mut(x, y).unwrap(); let mask_pixel = stencil_instance.instance.sample(mask_point); *image_pixel = image_pixel.multiplied_alpha(mask_pixel.l().cast_linear_channel()); } } result_table.push(image_instance); } result_table } #[node_macro::node(category(""))] pub fn extend_image_to_bounds(_: impl Ctx, image: RasterDataTable, bounds: DAffine2) -> RasterDataTable { let mut result_table = RasterDataTable::default(); for mut image_instance in image.instance_iter() { let image_aabb = Bbox::unit().affine_transform(image_instance.transform).to_axis_aligned_bbox(); let bounds_aabb = Bbox::unit().affine_transform(bounds.transform()).to_axis_aligned_bbox(); if image_aabb.contains(bounds_aabb.start) && image_aabb.contains(bounds_aabb.end) { result_table.push(image_instance); continue; } let image_data = &image_instance.instance.data; let (image_width, image_height) = (image_instance.instance.width, image_instance.instance.height); if image_width == 0 || image_height == 0 { for image_instance in empty_image((), bounds, Color::TRANSPARENT).instance_iter() { result_table.push(image_instance); } continue; } let orig_image_scale = DVec2::new(image_width as f64, image_height as f64); let layer_to_image_space = DAffine2::from_scale(orig_image_scale) * image_instance.transform.inverse(); let bounds_in_image_space = Bbox::unit().affine_transform(layer_to_image_space * bounds).to_axis_aligned_bbox(); let new_start = bounds_in_image_space.start.floor().min(DVec2::ZERO); let new_end = bounds_in_image_space.end.ceil().max(orig_image_scale); let new_scale = new_end - new_start; // Copy over original image into enlarged image. let mut new_image = Image::new(new_scale.x as u32, new_scale.y as u32, Color::TRANSPARENT); let offset_in_new_image = (-new_start).as_uvec2(); for y in 0..image_height { let old_start = y * image_width; let new_start = (y + offset_in_new_image.y) * new_image.width + offset_in_new_image.x; let old_row = &image_data[old_start as usize..(old_start + image_width) as usize]; let new_row = &mut new_image.data[new_start as usize..(new_start + image_width) as usize]; new_row.copy_from_slice(old_row); } // Compute new transform. // let layer_to_new_texture_space = (DAffine2::from_scale(1. / new_scale) * DAffine2::from_translation(new_start) * layer_to_image_space).inverse(); let new_texture_to_layer_space = image_instance.transform * DAffine2::from_scale(1. / orig_image_scale) * DAffine2::from_translation(new_start) * DAffine2::from_scale(new_scale); image_instance.instance = Raster::new_cpu(new_image); image_instance.transform = new_texture_to_layer_space; image_instance.source_node_id = None; result_table.push(image_instance); } result_table } #[node_macro::node(category("Debug: Raster"))] pub fn empty_image(_: impl Ctx, transform: DAffine2, color: Color) -> RasterDataTable { let width = transform.transform_vector2(DVec2::new(1., 0.)).length() as u32; let height = transform.transform_vector2(DVec2::new(0., 1.)).length() as u32; let image = Image::new(width, height, color); let mut result_table = RasterDataTable::new(Raster::new_cpu(image)); let image_instance = result_table.get_mut(0).unwrap(); *image_instance.transform = transform; *image_instance.alpha_blending = AlphaBlending::default(); // Callers of empty_image can safely unwrap on returned table result_table } /// Constructs a raster image. #[node_macro::node(category(""))] pub fn image_value(_: impl Ctx, _primary: (), image: RasterDataTable) -> RasterDataTable { image } #[node_macro::node(category("Raster: Pattern"))] #[allow(clippy::too_many_arguments)] pub fn noise_pattern( ctx: impl ExtractFootprint + Ctx, _primary: (), clip: bool, seed: u32, scale: f64, noise_type: NoiseType, domain_warp_type: DomainWarpType, domain_warp_amplitude: f64, fractal_type: FractalType, fractal_octaves: u32, fractal_lacunarity: f64, fractal_gain: f64, fractal_weighted_strength: f64, fractal_ping_pong_strength: f64, cellular_distance_function: CellularDistanceFunction, cellular_return_type: CellularReturnType, cellular_jitter: f64, ) -> RasterDataTable { let footprint = ctx.footprint(); let viewport_bounds = footprint.viewport_bounds_in_local_space(); let mut size = viewport_bounds.size(); let mut offset = viewport_bounds.start; if clip { // TODO: Remove "clip" entirely (and its arbitrary 100x100 clipping square) once we have proper resolution-aware layer clipping const CLIPPING_SQUARE_SIZE: f64 = 100.; let image_bounds = Bbox::from_transform(DAffine2::from_scale(DVec2::splat(CLIPPING_SQUARE_SIZE))).to_axis_aligned_bbox(); let intersection = viewport_bounds.intersect(&image_bounds); offset = (intersection.start - image_bounds.start).max(DVec2::ZERO); size = intersection.size(); } // If the image would not be visible, return an empty image if size.x <= 0. || size.y <= 0. { return RasterDataTable::default(); } let footprint_scale = footprint.scale(); let width = (size.x * footprint_scale.x) as u32; let height = (size.y * footprint_scale.y) as u32; // All let mut image = Image::new(width, height, Color::from_luminance(0.5)); let mut noise = fastnoise_lite::FastNoiseLite::with_seed(seed as i32); noise.set_frequency(Some(1. / (scale as f32).max(f32::EPSILON))); // Domain Warp let domain_warp_type = match domain_warp_type { DomainWarpType::None => None, DomainWarpType::OpenSimplex2 => Some(fastnoise_lite::DomainWarpType::OpenSimplex2), DomainWarpType::OpenSimplex2Reduced => Some(fastnoise_lite::DomainWarpType::OpenSimplex2Reduced), DomainWarpType::BasicGrid => Some(fastnoise_lite::DomainWarpType::BasicGrid), }; let domain_warp_active = domain_warp_type.is_some(); noise.set_domain_warp_type(domain_warp_type); noise.set_domain_warp_amp(Some(domain_warp_amplitude as f32)); // Fractal let noise_type = match noise_type { NoiseType::Perlin => fastnoise_lite::NoiseType::Perlin, NoiseType::OpenSimplex2 => fastnoise_lite::NoiseType::OpenSimplex2, NoiseType::OpenSimplex2S => fastnoise_lite::NoiseType::OpenSimplex2S, NoiseType::Cellular => fastnoise_lite::NoiseType::Cellular, NoiseType::ValueCubic => fastnoise_lite::NoiseType::ValueCubic, NoiseType::Value => fastnoise_lite::NoiseType::Value, NoiseType::WhiteNoise => { // TODO: Generate in layer space, not viewport space let mut rng = ChaCha8Rng::seed_from_u64(seed as u64); for y in 0..height { for x in 0..width { let pixel = image.get_pixel_mut(x, y).unwrap(); let luminance = rng.random_range(0.0..1.) as f32; *pixel = Color::from_luminance(luminance); } } let mut result = RasterDataTable::default(); result.push(Instance { instance: Raster::new_cpu(image), transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), ..Default::default() }); return result; } }; noise.set_noise_type(Some(noise_type)); let fractal_type = match fractal_type { FractalType::None => fastnoise_lite::FractalType::None, FractalType::FBm => fastnoise_lite::FractalType::FBm, FractalType::Ridged => fastnoise_lite::FractalType::Ridged, FractalType::PingPong => fastnoise_lite::FractalType::PingPong, FractalType::DomainWarpProgressive => fastnoise_lite::FractalType::DomainWarpProgressive, FractalType::DomainWarpIndependent => fastnoise_lite::FractalType::DomainWarpIndependent, }; noise.set_fractal_type(Some(fractal_type)); noise.set_fractal_octaves(Some(fractal_octaves as i32)); noise.set_fractal_lacunarity(Some(fractal_lacunarity as f32)); noise.set_fractal_gain(Some(fractal_gain as f32)); noise.set_fractal_weighted_strength(Some(fractal_weighted_strength as f32)); noise.set_fractal_ping_pong_strength(Some(fractal_ping_pong_strength as f32)); // Cellular let cellular_distance_function = match cellular_distance_function { CellularDistanceFunction::Euclidean => fastnoise_lite::CellularDistanceFunction::Euclidean, CellularDistanceFunction::EuclideanSq => fastnoise_lite::CellularDistanceFunction::EuclideanSq, CellularDistanceFunction::Manhattan => fastnoise_lite::CellularDistanceFunction::Manhattan, CellularDistanceFunction::Hybrid => fastnoise_lite::CellularDistanceFunction::Hybrid, }; let cellular_return_type = match cellular_return_type { CellularReturnType::CellValue => fastnoise_lite::CellularReturnType::CellValue, CellularReturnType::Nearest => fastnoise_lite::CellularReturnType::Distance, CellularReturnType::NextNearest => fastnoise_lite::CellularReturnType::Distance2, CellularReturnType::Average => fastnoise_lite::CellularReturnType::Distance2Add, CellularReturnType::Difference => fastnoise_lite::CellularReturnType::Distance2Sub, CellularReturnType::Product => fastnoise_lite::CellularReturnType::Distance2Mul, CellularReturnType::Division => fastnoise_lite::CellularReturnType::Distance2Div, }; noise.set_cellular_distance_function(Some(cellular_distance_function)); noise.set_cellular_return_type(Some(cellular_return_type)); noise.set_cellular_jitter(Some(cellular_jitter as f32)); let coordinate_offset = offset.as_vec2(); let scale = size.as_vec2() / Vec2::new(width as f32, height as f32); // Calculate the noise for every pixel for y in 0..height { for x in 0..width { let pixel = image.get_pixel_mut(x, y).unwrap(); let pos = Vec2::new(x as f32, y as f32); let vec = pos * scale + coordinate_offset; let (mut x, mut y) = (vec.x, vec.y); if domain_warp_active && domain_warp_amplitude > 0. { (x, y) = noise.domain_warp_2d(x, y); } let luminance = (noise.get_noise_2d(x, y) + 1.) * 0.5; *pixel = Color::from_luminance(luminance); } } let mut result = RasterDataTable::default(); result.push(Instance { instance: Raster::new_cpu(image), transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), ..Default::default() }); result } #[node_macro::node(category("Raster: Pattern"))] pub fn mandelbrot(ctx: impl ExtractFootprint + Send) -> RasterDataTable { let footprint = ctx.footprint(); let viewport_bounds = footprint.viewport_bounds_in_local_space(); let image_bounds = Bbox::from_transform(DAffine2::IDENTITY).to_axis_aligned_bbox(); let intersection = viewport_bounds.intersect(&image_bounds); let size = intersection.size(); let offset = (intersection.start - image_bounds.start).max(DVec2::ZERO); // If the image would not be visible, return an empty image if size.x <= 0. || size.y <= 0. { return RasterDataTable::default(); } let scale = footprint.scale(); let width = (size.x * scale.x) as u32; let height = (size.y * scale.y) as u32; let mut data = Vec::with_capacity(width as usize * height as usize); let max_iter = 255; let scale = 3. * size.as_vec2() / Vec2::new(width as f32, height as f32); let coordinate_offset = offset.as_vec2() * 3. - Vec2::new(2., 1.5); for y in 0..height { for x in 0..width { let pos = Vec2::new(x as f32, y as f32); let c = pos * scale + coordinate_offset; let iter = mandelbrot_impl(c, max_iter); data.push(map_color(iter, max_iter)); } } let image = Image { width, height, data, ..Default::default() }; let mut result = RasterDataTable::default(); result.push(Instance { instance: Raster::new_cpu(image), transform: DAffine2::from_translation(offset) * DAffine2::from_scale(size), ..Default::default() }); result } #[inline(always)] fn mandelbrot_impl(c: Vec2, max_iter: usize) -> usize { let mut z = Vec2::new(0., 0.); for i in 0..max_iter { z = Vec2::new(z.x * z.x - z.y * z.y, 2. * z.x * z.y) + c; if z.length_squared() > 4. { return i; } } max_iter } fn map_color(iter: usize, max_iter: usize) -> Color { let v = iter as f32 / max_iter as f32; Color::from_rgbaf32_unchecked(v, v, v, 1.) }