File size: 13,005 Bytes
64e55d6
 
 
 
 
 
 
 
 
 
 
 
6284a4a
 
64e55d6
 
 
6284a4a
 
 
 
 
 
 
 
 
 
 
 
 
 
64e55d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63b0848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e55d6
63b0848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e55d6
 
 
6284a4a
64e55d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6284a4a
63b0848
 
6284a4a
 
63b0848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e55d6
29b2c47
6284a4a
 
 
29b2c47
 
 
 
 
 
64e55d6
6284a4a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
import torch
from imagebind import data
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType
from pydub import AudioSegment
from fastapi import FastAPI, UploadFile, File, Form
from typing import List, Dict
import tempfile
from pydantic import BaseModel
import uvicorn
import numpy as np
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi import Depends, HTTPException, status

app = FastAPI()

# Add these lines after the app initialization
security = HTTPBearer()
API_TOKEN = os.getenv("API_TOKEN", "your-default-token-here")  # Set a default token or use environment variable

# Add this function for token verification
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
    if credentials.credentials != API_TOKEN:
        raise HTTPException(
            status_code=status.HTTP_401_UNAUTHORIZED,
            detail="Invalid authentication token",
            headers={"WWW-Authenticate": "Bearer"},
        )
    return credentials.credentials

def convert_audio_to_wav(audio_path: str) -> str:
    """Convert MP3 to WAV if necessary."""
    if audio_path.lower().endswith('.mp3'):
        wav_path = audio_path.rsplit('.', 1)[0] + '.wav'
        if not os.path.exists(wav_path):
            audio = AudioSegment.from_mp3(audio_path)
            audio.export(wav_path, format='wav')
        return wav_path
    return audio_path

class EmbeddingManager:
    def __init__(self):
        self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
        self.model = imagebind_model.imagebind_huge(pretrained=True)
        self.model.eval()
        self.model.to(self.device)
    
    def compute_embeddings(self, 
                          images: List[str] = None, 
                          audio_files: List[str] = None, 
                          texts: List[str] = None) -> dict:
        """Compute embeddings for provided modalities only."""
        with torch.no_grad():
            inputs = {}
            
            if texts:
                inputs[ModalityType.TEXT] = data.load_and_transform_text(texts, self.device)
            if images:
                inputs[ModalityType.VISION] = data.load_and_transform_vision_data(images, self.device)
            if audio_files:
                inputs[ModalityType.AUDIO] = data.load_and_transform_audio_data(audio_files, self.device)
            
            if not inputs:
                return {}
                
            embeddings = self.model(inputs)
            
            result = {}
            if ModalityType.VISION in inputs:
                result['vision'] = embeddings[ModalityType.VISION].cpu().numpy().tolist()
            if ModalityType.AUDIO in inputs:
                result['audio'] = embeddings[ModalityType.AUDIO].cpu().numpy().tolist()
            if ModalityType.TEXT in inputs:
                result['text'] = embeddings[ModalityType.TEXT].cpu().numpy().tolist()
                
            return result

    @staticmethod
    def compute_similarities(embeddings: Dict[str, List[List[float]]]) -> dict:
        """Compute similarities between available embeddings."""
        similarities = {}
        
        # Convert available embeddings to tensors
        tensors = {
            k: torch.tensor(v) for k, v in embeddings.items()
            if isinstance(v, (list, np.ndarray)) and len(v) > 0
        }
        
        # Compute cross-modal similarities
        modality_pairs = [
            ('vision', 'audio', 'vision_audio'),
            ('vision', 'text', 'vision_text'),
            ('audio', 'text', 'audio_text')
        ]
        
        for mod1, mod2, key in modality_pairs:
            if mod1 in tensors and mod2 in tensors:
                similarities[key] = torch.softmax(
                    tensors[mod1] @ tensors[mod2].T, 
                    dim=-1
                ).numpy().tolist()
        
        # Compute same-modality similarities
        for modality in ['vision', 'audio', 'text']:
            if modality in tensors:
                key = f'{modality}_{modality}'
                similarities[key] = torch.softmax(
                    tensors[modality] @ tensors[modality].T,
                    dim=-1
                ).numpy().tolist()
        
        return similarities

# Initialize the embedding manager
embedding_manager = EmbeddingManager()

class EmbeddingResponse(BaseModel):
    embeddings: dict
    file_names: dict

class SimilarityRequest(BaseModel):
    embeddings: Dict[str, List[List[float]]]
    threshold: float = 0.5
    top_k: int | None = None
    include_self_similarity: bool = False
    normalize_scores: bool = True

class SimilarityMatch(BaseModel):
    index_a: int
    index_b: int
    score: float
    modality_a: str
    modality_b: str
    item_a: str  # Original item identifier (filename or text)
    item_b: str  # Original item identifier (filename or text)

class SimilarityResponse(BaseModel):
    matches: List[SimilarityMatch]
    statistics: Dict[str, float]  # Contains avg_score, max_score, etc.
    modality_pairs: List[str]  # Lists which modality comparisons were performed

class ModalityPair:
    def __init__(self, mod1: str, mod2: str):
        self.mod1 = min(mod1, mod2)  # Ensure consistent ordering
        self.mod2 = max(mod1, mod2)
    
    def __str__(self):
        return f"{self.mod1}_to_{self.mod2}"

def compute_similarity_matrix(tensor1: torch.Tensor, tensor2: torch.Tensor, normalize: bool = True) -> torch.Tensor:
    """Compute cosine similarity between two sets of embeddings."""
    # Normalize embeddings if requested
    if normalize:
        tensor1 = torch.nn.functional.normalize(tensor1, dim=1)
        tensor2 = torch.nn.functional.normalize(tensor2, dim=1)
    
    # Compute similarity matrix
    similarity = torch.matmul(tensor1, tensor2.T)
    
    return similarity

def get_top_k_matches(similarity_matrix: torch.Tensor, top_k: int | None = None) -> List[tuple]:
    """Get top-k matches from a similarity matrix."""
    if top_k is None:
        top_k = similarity_matrix.numel()
    
    # Flatten and get top-k indices
    flat_sim = similarity_matrix.flatten()
    top_k = min(top_k, flat_sim.numel())
    values, indices = torch.topk(flat_sim, k=top_k)
    
    # Convert flat indices to 2D indices
    rows = indices // similarity_matrix.size(1)
    cols = indices % similarity_matrix.size(1)
    
    return [(r.item(), c.item(), v.item()) for r, c, v in zip(rows, cols, values)]

@app.post("/compute_embeddings", response_model=EmbeddingResponse)
async def generate_embeddings(
    credentials: HTTPAuthorizationCredentials = Depends(verify_token),
    texts: str | None = Form(None),
    images: List[UploadFile] | None = File(default=None),
    audio_files: List[UploadFile] | None = File(default=None)
):
    """Generate embeddings for any provided files and texts."""
    temp_files = []
    
    try:
        image_paths = []
        image_names = []
        audio_paths = []
        audio_names = []
        text_list = []
        
        # Process images if provided
        if images:
            for img in images:
                with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(img.filename)[1]) as tmp:
                    content = await img.read()
                    tmp.write(content)
                    image_paths.append(tmp.name)
                    image_names.append(img.filename)
                    temp_files.append(tmp.name)
        
        # Process audio files if provided
        if audio_files:
            for audio in audio_files:
                with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(audio.filename)[1]) as tmp:
                    content = await audio.read()
                    tmp.write(content)
                    audio_path = convert_audio_to_wav(tmp.name)
                    audio_paths.append(audio_path)
                    audio_names.append(audio.filename)
                    temp_files.append(tmp.name)
                    if audio_path != tmp.name:
                        temp_files.append(audio_path)
        
        # Process texts if provided
        if texts:
            text_list = [text.strip() for text in texts.split('\n') if text.strip()]
        
        # Compute embeddings only if we have any input
        if not any([image_paths, audio_paths, text_list]):
            return EmbeddingResponse(
                embeddings={},
                file_names={}
            )
        
        embeddings = embedding_manager.compute_embeddings(
            image_paths if image_paths else None,
            audio_paths if audio_paths else None,
            text_list if text_list else None
        )
        
        file_names = {}
        if image_names:
            file_names['images'] = image_names
        if audio_names:
            file_names['audio'] = audio_names
        if text_list:
            file_names['texts'] = text_list
        
        return EmbeddingResponse(
            embeddings=embeddings,
            file_names=file_names
        )
        
    finally:
        # Clean up temporary files
        for temp_file in temp_files:
            try:
                os.unlink(temp_file)
            except:
                pass

@app.post("/compute_similarities", response_model=SimilarityResponse)
async def compute_similarities(
    request: SimilarityRequest,
    file_names: Dict[str, List[str]],  # Maps modality to list of file/text names
    credentials: HTTPAuthorizationCredentials = Depends(verify_token)
):
    """
    Compute cross-modal similarities with advanced filtering and matching options.
    
    Parameters:
    - embeddings: Dict mapping modality to embedding tensors
    - threshold: Minimum similarity score to include in results
    - top_k: Maximum number of matches to return (per modality pair)
    - include_self_similarity: Whether to include same-item comparisons
    - normalize_scores: Whether to normalize embeddings before comparison
    - file_names: Dict mapping modality to list of original file/text names
    """
    
    matches = []
    statistics = {
        "avg_score": 0.0,
        "max_score": 0.0,
        "min_score": 1.0,
        "total_comparisons": 0
    }
    
    # Convert embeddings to tensors
    tensors = {
        k: torch.tensor(v) for k, v in request.embeddings.items()
        if isinstance(v, (list, np.ndarray)) and len(v) > 0
    }
    
    modality_pairs = []
    all_scores = []
    
    # Get all possible modality pairs
    modalities = list(tensors.keys())
    for i, mod1 in enumerate(modalities):
        for mod2 in modalities[i:]:  # Include self-comparisons if requested
            if mod1 == mod2 and not request.include_self_similarity:
                continue
                
            pair = ModalityPair(mod1, mod2)
            modality_pairs.append(str(pair))
            
            # Compute similarity matrix
            sim_matrix = compute_similarity_matrix(
                tensors[mod1], 
                tensors[mod2],
                normalize=request.normalize_scores
            )
            
            # Get top matches
            top_matches = get_top_k_matches(sim_matrix, request.top_k)
            
            # Filter by threshold and create match objects
            for idx_a, idx_b, score in top_matches:
                if score < request.threshold:
                    continue
                    
                # Skip self-matches if not requested
                if mod1 == mod2 and idx_a == idx_b and not request.include_self_similarity:
                    continue
                
                matches.append(SimilarityMatch(
                    index_a=idx_a,
                    index_b=idx_b,
                    score=float(score),
                    modality_a=mod1,
                    modality_b=mod2,
                    item_a=file_names[mod1][idx_a],
                    item_b=file_names[mod2][idx_b]
                ))
                all_scores.append(score)
    
    # Compute statistics
    if all_scores:
        statistics.update({
            "avg_score": float(np.mean(all_scores)),
            "max_score": float(np.max(all_scores)),
            "min_score": float(np.min(all_scores)),
            "total_comparisons": len(all_scores)
        })
    
    # Sort matches by score in descending order
    matches.sort(key=lambda x: x.score, reverse=True)
    
    return SimilarityResponse(
        matches=matches,
        statistics=statistics,
        modality_pairs=modality_pairs
    )

@app.get("/health")
async def health_check(
    credentials: HTTPAuthorizationCredentials = Depends(verify_token)
):
    """Basic healthcheck endpoint that returns the status of the service."""
    return {
        "status": "healthy",
        "model_device": embedding_manager.device
    }

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)