Spaces:
Runtime error
Runtime error
File size: 15,339 Bytes
64e55d6 5bab2e7 64e55d6 5bab2e7 b7271ae 5bab2e7 64e55d6 5bab2e7 b7271ae 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 6284a4a 5bab2e7 6284a4a 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 b7271ae 64e55d6 5bab2e7 b7271ae 64e55d6 5bab2e7 63b0848 5bab2e7 b7271ae 5bab2e7 b7271ae 63b0848 64e55d6 63b0848 5bab2e7 63b0848 5bab2e7 b7271ae 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 64e55d6 5bab2e7 63b0848 5bab2e7 63b0848 5bab2e7 63b0848 64e55d6 5bab2e7 29b2c47 5bab2e7 29b2c47 64e55d6 5bab2e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import torch
from imagebind import data
from imagebind.models import imagebind_model
from imagebind.models.imagebind_model import ModalityType as ImageBindModalityType
from pydub import AudioSegment
from fastapi import FastAPI, UploadFile, File, Form, Depends, HTTPException, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel, Field # Убрали BaseSettings отсюда
from pydantic_settings import BaseSettings # <--- ИЗМЕНЕННЫЙ ИМПОРТ
from typing import List, Dict, Optional, Tuple, Any
import tempfile
import uvicorn
import numpy as np
import logging
from contextlib import asynccontextmanager
class Settings(BaseSettings):
api_token: str = "your-default-token-here"
model_device: Optional[str] = None
log_level: str = "INFO"
class Config:
env_file = ".env"
env_file_encoding = 'utf-8'
settings = Settings()
logging.basicConfig(level=settings.log_level.upper())
logger = logging.getLogger(__name__)
class EmbeddingManager:
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(EmbeddingManager, cls).__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self):
if not hasattr(self, 'initialized'):
self.device = settings.model_device or ("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info(f"Initializing EmbeddingManager on device: {self.device}")
try:
self.model = imagebind_model.imagebind_huge(pretrained=True)
self.model.eval()
self.model.to(self.device)
self.initialized = True
logger.info("ImageBind model loaded successfully.")
except Exception as e:
logger.error(f"Failed to load ImageBind model: {e}")
raise RuntimeError(f"Failed to load ImageBind model: {e}")
async def compute_embeddings(self,
image_inputs: Optional[List[Tuple[str, str]]] = None,
audio_inputs: Optional[List[Tuple[str, str]]] = None,
text_inputs: Optional[List[str]] = None,
depth_inputs: Optional[List[Tuple[str, str]]] = None,
thermal_inputs: Optional[List[Tuple[str, str]]] = None,
imu_inputs: Optional[List[Tuple[str, str]]] = None
) -> Dict[str, List[Dict[str, Any]]]:
inputs = {}
input_ids = {}
if text_inputs:
inputs[ImageBindModalityType.TEXT] = data.load_and_transform_text(text_inputs, self.device)
input_ids[ImageBindModalityType.TEXT] = text_inputs
if image_inputs:
paths = [item[0] for item in image_inputs]
inputs[ImageBindModalityType.VISION] = data.load_and_transform_vision_data(paths, self.device)
input_ids[ImageBindModalityType.VISION] = [item[1] for item in image_inputs]
if audio_inputs:
paths = [item[0] for item in audio_inputs]
inputs[ImageBindModalityType.AUDIO] = data.load_and_transform_audio_data(paths, self.device)
input_ids[ImageBindModalityType.AUDIO] = [item[1] for item in audio_inputs]
if depth_inputs:
logger.warning("Depth modality processing is not yet fully implemented.")
if thermal_inputs:
logger.warning("Thermal modality processing is not yet fully implemented.")
if imu_inputs:
logger.warning("IMU modality processing is not yet fully implemented.")
if not inputs:
return {}
with torch.no_grad():
raw_embeddings = await run_in_threadpool(self.model, inputs)
result_embeddings = {}
for modality_type, embeddings_tensor in raw_embeddings.items():
modality_key = modality_type.name.lower()
result_embeddings[modality_key] = []
ids_for_modality = input_ids.get(modality_type, [])
for i, emb in enumerate(embeddings_tensor.cpu().numpy().tolist()):
item_id = ids_for_modality[i] if i < len(ids_for_modality) else f"item_{i}"
result_embeddings[modality_key].append({"id": item_id, "embedding": emb})
return result_embeddings
embedding_manager: Optional[EmbeddingManager] = None
@asynccontextmanager
async def lifespan(app: FastAPI):
global embedding_manager
logger.info("Application startup...")
embedding_manager = EmbeddingManager()
settings.model_device = embedding_manager.device
yield
logger.info("Application shutdown...")
app = FastAPI(lifespan=lifespan, title="ImageBind API", version="0.2.0")
security = HTTPBearer()
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
if credentials.scheme != "Bearer" or credentials.credentials != settings.api_token:
logger.warning(f"Invalid authentication attempt. Scheme: {credentials.scheme}")
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid authentication token",
headers={"WWW-Authenticate": "Bearer"},
)
return credentials.credentials
async def _save_upload_file_tmp(upload_file: UploadFile) -> Tuple[str, str]:
try:
suffix = os.path.splitext(upload_file.filename)[1]
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
content = await upload_file.read()
tmp.write(content)
return tmp.name, upload_file.filename
except Exception as e:
logger.error(f"Error saving uploaded file {upload_file.filename}: {e}")
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Could not save file: {upload_file.filename}")
def convert_audio_to_wav(audio_path: str, original_filename: str) -> str:
if audio_path.lower().endswith('.mp3') or not audio_path.lower().endswith('.wav'):
wav_path = audio_path.rsplit('.', 1)[0] + '.wav'
try:
logger.info(f"Converting {original_filename} to WAV format.")
audio = AudioSegment.from_file(audio_path)
audio.export(wav_path, format='wav')
if audio_path != wav_path and os.path.exists(audio_path):
try:
os.unlink(audio_path)
except OSError:
pass
return wav_path
except Exception as e:
logger.error(f"Error converting audio file {original_filename} to WAV: {e}")
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=f"Could not process audio file {original_filename}: {e}")
return audio_path
class ModalityType(str):
VISION = "vision"
AUDIO = "audio"
TEXT = "text"
DEPTH = "depth"
THERMAL = "thermal"
IMU = "imu"
class EmbeddingItem(BaseModel):
id: str
embedding: List[float]
class EmbeddingPayload(BaseModel):
vision: Optional[List[EmbeddingItem]] = None
audio: Optional[List[EmbeddingItem]] = None
text: Optional[List[EmbeddingItem]] = None
depth: Optional[List[EmbeddingItem]] = None
thermal: Optional[List[EmbeddingItem]] = None
imu: Optional[List[EmbeddingItem]] = None
class EmbeddingResponse(BaseModel):
embeddings: EmbeddingPayload
message: str = "Embeddings computed successfully"
class SimilarityMatch(BaseModel):
item_a_id: str
item_b_id: str
modality_a: ModalityType
modality_b: ModalityType
score: float
class SimilarityRequest(BaseModel):
embeddings_payload: EmbeddingPayload
threshold: float = 0.5
top_k: Optional[int] = None
normalize_scores: bool = True
compare_within_modalities: bool = True
compare_across_modalities: bool = True
class SimilarityResponse(BaseModel):
matches: List[SimilarityMatch]
statistics: Dict[str, float]
modality_pairs_compared: List[str]
@app.post("/compute_embeddings", response_model=EmbeddingResponse, dependencies=[Depends(verify_token)])
async def generate_embeddings_endpoint(
texts: Optional[List[str]] = Form(None),
images: Optional[List[UploadFile]] = File(default=None),
audio_files: Optional[List[UploadFile]] = File(default=None)
):
if embedding_manager is None:
raise HTTPException(status_code=503, detail="Embedding manager not initialized.")
temp_files_to_clean = []
try:
image_inputs: List[Tuple[str, str]] = []
audio_inputs: List[Tuple[str, str]] = []
if images:
for img_file in images:
path, name = await _save_upload_file_tmp(img_file)
image_inputs.append((path, name))
temp_files_to_clean.append(path)
if audio_files:
for audio_file_in in audio_files:
path, name = await _save_upload_file_tmp(audio_file_in)
temp_files_to_clean.append(path)
wav_path = convert_audio_to_wav(path, name)
audio_inputs.append((wav_path, name))
if wav_path != path:
temp_files_to_clean.append(wav_path)
text_inputs_processed = [t.strip() for t in texts if t.strip()] if texts else None
if not any([image_inputs, audio_inputs, text_inputs_processed]):
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="No valid inputs provided for embedding.")
computed_data = await embedding_manager.compute_embeddings(
image_inputs=image_inputs if image_inputs else None,
audio_inputs=audio_inputs if audio_inputs else None,
text_inputs=text_inputs_processed if text_inputs_processed else None
)
payload_data = {
ModalityType.VISION: computed_data.get(ModalityType.VISION, []),
ModalityType.AUDIO: computed_data.get(ModalityType.AUDIO, []),
ModalityType.TEXT: computed_data.get(ModalityType.TEXT, []),
}
embedding_payload = EmbeddingPayload(**payload_data)
return EmbeddingResponse(embeddings=embedding_payload)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in /compute_embeddings: {e}", exc_info=True)
raise HTTPException(status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"An unexpected error occurred: {str(e)}")
finally:
for temp_file in temp_files_to_clean:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except Exception as e_clean:
logger.warning(f"Could not clean up temporary file {temp_file}: {e_clean}")
def _compute_similarity_matrix(tensor1: torch.Tensor, tensor2: torch.Tensor, normalize: bool) -> torch.Tensor:
if normalize:
tensor1 = torch.nn.functional.normalize(tensor1, p=2, dim=1)
tensor2 = torch.nn.functional.normalize(tensor2, p=2, dim=1)
return torch.matmul(tensor1, tensor2.T)
@app.post("/compute_similarities", response_model=SimilarityResponse, dependencies=[Depends(verify_token)])
async def compute_similarities_endpoint(request: SimilarityRequest):
all_matches: List[SimilarityMatch] = []
all_scores: List[float] = []
modality_pairs_compared_set = set()
embeddings_by_modality: Dict[ModalityType, List[EmbeddingItem]] = {}
if request.embeddings_payload.vision:
embeddings_by_modality[ModalityType.VISION] = request.embeddings_payload.vision
if request.embeddings_payload.audio:
embeddings_by_modality[ModalityType.AUDIO] = request.embeddings_payload.audio
if request.embeddings_payload.text:
embeddings_by_modality[ModalityType.TEXT] = request.embeddings_payload.text
modalities_present = list(embeddings_by_modality.keys())
current_device = embedding_manager.device if embedding_manager else "cpu"
for i, mod1_type in enumerate(modalities_present):
items1 = embeddings_by_modality[mod1_type]
if not items1: continue
tensor1 = torch.tensor([item.embedding for item in items1], device=current_device)
if request.compare_within_modalities:
sim_matrix_intra = _compute_similarity_matrix(tensor1, tensor1, request.normalize_scores)
modality_pairs_compared_set.add(f"{mod1_type.value}_vs_{mod1_type.value}")
for r_idx in range(len(items1)):
for c_idx in range(r_idx + 1, len(items1)):
score = float(sim_matrix_intra[r_idx, c_idx].item())
if score >= request.threshold:
all_matches.append(SimilarityMatch(
item_a_id=items1[r_idx].id, item_b_id=items1[c_idx].id,
modality_a=mod1_type, modality_b=mod1_type, score=score
))
all_scores.append(score)
if request.compare_across_modalities:
for j in range(i + 1, len(modalities_present)):
mod2_type = modalities_present[j]
items2 = embeddings_by_modality[mod2_type]
if not items2: continue
tensor2 = torch.tensor([item.embedding for item in items2], device=current_device)
sim_matrix_inter = _compute_similarity_matrix(tensor1, tensor2, request.normalize_scores)
modality_pairs_compared_set.add(f"{mod1_type.value}_vs_{mod2_type.value}")
for r_idx in range(len(items1)):
for c_idx in range(len(items2)):
score = float(sim_matrix_inter[r_idx, c_idx].item())
if score >= request.threshold:
all_matches.append(SimilarityMatch(
item_a_id=items1[r_idx].id, item_b_id=items2[c_idx].id,
modality_a=mod1_type, modality_b=mod2_type, score=score
))
all_scores.append(score)
all_matches.sort(key=lambda x: x.score, reverse=True)
if request.top_k and len(all_matches) > request.top_k:
all_matches = all_matches[:request.top_k]
all_scores = [match.score for match in all_matches]
stats = {
"total_matches_found_above_threshold": len(all_matches),
"avg_score": float(np.mean(all_scores)) if all_scores else 0.0,
"max_score": float(np.max(all_scores)) if all_scores else 0.0,
"min_score": float(np.min(all_scores)) if all_scores else 0.0,
}
return SimilarityResponse(
matches=all_matches,
statistics=stats,
modality_pairs_compared=sorted(list(modality_pairs_compared_set))
)
@app.get("/health", status_code=status.HTTP_200_OK, dependencies=[Depends(verify_token)])
async def health_check():
return {
"status": "healthy",
"model_device": settings.model_device,
"torch_version": torch.__version__,
"cuda_available": torch.cuda.is_available()
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860, log_level=settings.log_level.lower()) |