Spaces:
Running
Running
File size: 8,302 Bytes
11e4904 58e6c10 11e4904 58e6c10 11e4904 58e6c10 11e4904 58e6c10 11e4904 58e6c10 7d762a5 11e4904 58e6c10 11e4904 7d762a5 58e6c10 11e4904 58e6c10 11e4904 58e6c10 11e4904 58e6c10 11e4904 58e6c10 11e4904 58e6c10 11e4904 7d762a5 7fb2842 7d762a5 7fb2842 7d762a5 11e4904 58e6c10 7d762a5 58e6c10 11e4904 7d762a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import csv
import os
from datetime import datetime
from typing import Optional
import gradio as gr
from huggingface_hub import HfApi, Repository
from optimum_neuron_export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/neuron-exports"
DATA_FILENAME = "exports.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_WRITE_TOKEN")
DATADIR = "neuron_exports_data"
repo: Optional[Repository] = None
# Uncomment if you want to push to dataset repo with token
# if HF_TOKEN:
# repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)
def neuron_export(model_id: str, task: str) -> str:
if not model_id:
return f"### Invalid input π Please specify a model name, got {model_id}"
try:
api = HfApi(token=HF_TOKEN) # Use HF_TOKEN if available, else anonymous
token = HF_TOKEN # Pass token to convert only if available
error, commit_info = convert(api=api, model_id=model_id, task=task, token=token)
if error != "0":
return error
print("[commit_info]", commit_info)
# Save in a private dataset if repo initialized
if repo is not None:
repo.git_pull(rebase=True)
with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile:
writer = csv.DictWriter(
csvfile, fieldnames=["model_id", "pr_url", "time"]
)
writer.writerow(
{
"model_id": model_id,
"pr_url": commit_info.pr_url,
"time": str(datetime.now()),
}
)
commit_url = repo.push_to_hub()
print("[dataset]", commit_url)
pr_revision = commit_info.pr_revision.replace("/", "%2F")
return f"#### Success π₯ This model was successfully exported and a PR was opened: [{commit_info.pr_url}]({commit_info.pr_url}). To use the model before the PR is approved, go to https://huggingface.co/{model_id}/tree/{pr_revision}"
except Exception as e:
return f"#### Error: {e}"
TITLE_IMAGE = """
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="https://huggingface.co/spaces/optimum/neuron-export/resolve/main/huggingfaceXneuron.png"/>
</div>
"""
TITLE = """
<div style="display: inline-flex; align-items: center; text-align: center; max-width: 1400px; gap: 0.8rem; font-size: 2.2rem;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;">
π€ Optimum Neuron Model Exporter
</h1>
</div>
"""
DESCRIPTION = """
Export π€ Transformers models hosted on the Hugging Face Hub to AWS Neuron-optimized format for Inferentia/Trainium acceleration.
*Features:*
- Automatically opens PR with Neuron-optimized model
- Preserves original model weights
- Adds proper tags to model card
*Note:*
- PR creation requires the Space owner to have a valid write token set via HF_WRITE_TOKEN
"""
# Custom CSS to fix dark mode compatibility and transparency issues
CUSTOM_CSS = """
/* Fix for HuggingfaceHubSearch component visibility in both light and dark modes */
.gradio-container .gr-form {
background: var(--background-fill-primary) !important;
border: 1px solid var(--border-color-primary) !important;
}
/* Ensure text is visible in both modes */
.gradio-container input[type="text"],
.gradio-container textarea,
.gradio-container .gr-textbox input {
color: var(--body-text-color) !important;
background: var(--input-background-fill) !important;
border: 1px solid var(--border-color-primary) !important;
}
/* Fix dropdown/search results visibility */
.gradio-container .gr-dropdown,
.gradio-container .gr-dropdown .gr-box,
.gradio-container [data-testid="textbox"] {
background: var(--background-fill-primary) !important;
color: var(--body-text-color) !important;
border: 1px solid var(--border-color-primary) !important;
}
/* Fix for search component specifically */
.gradio-container .gr-form > div,
.gradio-container .gr-form input {
background: var(--input-background-fill) !important;
color: var(--body-text-color) !important;
}
/* Ensure proper contrast for placeholder text */
.gradio-container input::placeholder {
color: var(--body-text-color-subdued) !important;
opacity: 0.7;
}
/* Fix any remaining transparent backgrounds */
.gradio-container .gr-box,
.gradio-container .gr-panel {
background: var(--background-fill-primary) !important;
}
/* Make sure search results are visible - comprehensive dropdown fixes */
.gradio-container .gr-dropdown-item {
color: var(--body-text-color) !important;
background: var(--background-fill-primary) !important;
}
.gradio-container .gr-dropdown-item:hover {
background: var(--background-fill-secondary) !important;
}
/* Additional fixes for HuggingfaceHubSearch dropdown results */
.gradio-container [data-testid="dropdown"] > div,
.gradio-container [data-testid="dropdown"] .gr-box {
background: var(--background-fill-primary) !important;
color: var(--body-text-color) !important;
}
/* Fix for search results list items */
.gradio-container .gr-dropdown div[role="option"],
.gradio-container .gr-dropdown .gr-dropdown-item,
.gradio-container .gr-dropdown li {
background: var(--background-fill-primary) !important;
color: var(--body-text-color) !important;
border-bottom: 1px solid var(--border-color-primary) !important;
}
.gradio-container .gr-dropdown div[role="option"]:hover,
.gradio-container .gr-dropdown .gr-dropdown-item:hover,
.gradio-container .gr-dropdown li:hover {
background: var(--background-fill-secondary) !important;
color: var(--body-text-color) !important;
}
/* Fix for any ul/li dropdown elements */
.gradio-container ul.gr-dropdown,
.gradio-container .gr-dropdown ul {
background: var(--background-fill-primary) !important;
border: 1px solid var(--border-color-primary) !important;
}
/* Comprehensive fix for all dropdown text */
.gradio-container .gr-dropdown *,
.gradio-container [data-testid="dropdown"] *,
.gradio-container .gr-dropdown-container * {
color: var(--body-text-color) !important;
}
/* Fix for HuggingfaceHubSearch specific selectors */
.gradio-container .gradio-huggingfacehub-search .gr-dropdown,
.gradio-container .gradio-huggingfacehub-search [data-testid="dropdown"] {
background: var(--background-fill-primary) !important;
}
.gradio-container .gradio-huggingfacehub-search .gr-dropdown-item,
.gradio-container .gradio-huggingfacehub-search div[role="option"] {
background: var(--background-fill-primary) !important;
color: var(--body-text-color) !important;
}
/* Force visibility with !important for stubborn elements */
.gradio-container .gr-dropdown .gr-dropdown-item span,
.gradio-container .gr-dropdown div[role="option"] span,
.gradio-container [data-testid="dropdown"] span {
color: var(--body-text-color) !important;
background: transparent !important;
}
"""
with gr.Blocks(css=CUSTOM_CSS) as demo:
gr.HTML(TITLE_IMAGE)
gr.HTML(TITLE)
with gr.Row():
with gr.Column(scale=50):
gr.Markdown(DESCRIPTION)
with gr.Column(scale=50):
input_model = HuggingfaceHubSearch(
label="Hub model ID",
placeholder="Search for model ID on the hub",
search_type="model",
)
input_task = gr.Textbox(
value="auto",
max_lines=1,
label='Task (can be left to "auto", will be automatically inferred)',
)
btn = gr.Button("Export to Neuron")
output = gr.Markdown(label="Output")
btn.click(
fn=neuron_export,
inputs=[input_model, input_task],
outputs=output,
)
if __name__ == "__main__":
def restart_space():
if HF_TOKEN:
HfApi().restart_space(repo_id="optimum/neuron-export", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
demo.launch() |