File size: 31,189 Bytes
11e4904
 
 
ffec3e8
11e4904
58e6c10
11e4904
58e6c10
11e4904
 
 
 
 
 
 
 
 
58e6c10
11e4904
58e6c10
11e4904
 
 
 
58e6c10
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d7932
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1d7932
 
 
e1b4f11
 
 
 
 
 
 
 
7d762a5
ffec3e8
 
 
 
11e4904
 
58e6c10
11e4904
ffec3e8
58e6c10
ffec3e8
11e4904
 
58e6c10
11e4904
58e6c10
11e4904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e6c10
11e4904
ffec3e8
11e4904
 
 
 
 
 
 
 
 
58e6c10
11e4904
 
96104e4
 
8cae1e2
11e4904
 
58e6c10
11e4904
 
ffec3e8
96104e4
 
11e4904
 
 
96104e4
ffec3e8
 
 
11e4904
 
7d762a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c1483
 
 
 
54760e3
 
37c1483
 
7fb2842
e1b4f11
 
 
 
 
 
 
 
 
 
7d762a5
 
 
ffec3e8
 
 
 
96104e4
11e4904
 
96104e4
 
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
e1d7932
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e303e0b
 
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e303e0b
 
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e303e0b
 
 
 
e1b4f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96104e4
e1b4f11
 
7d762a5
58e6c10
11e4904
 
 
 
 
e1b4f11
11e4904
 
7d762a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import csv
import os
from datetime import datetime
from typing import Optional, Union

import gradio as gr
from huggingface_hub import HfApi, Repository

from optimum_neuron_export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler

DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/neuron-exports"
DATA_FILENAME = "exports.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)

HF_TOKEN = os.environ.get("HF_WRITE_TOKEN")

DATADIR = "neuron_exports_data"

repo: Optional[Repository] = None
# Uncomment if you want to push to dataset repo with token
# if HF_TOKEN:
#     repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)

# Define all possible tasks and their categories for coloring
TASK_CATEGORIES = {
    "auto": {"color": "#6b7280", "category": "Auto"},
    "feature-extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
    "fill-mask": {"color": "#8b5cf6", "category": "NLP"},
    "multiple-choice": {"color": "#8b5cf6", "category": "NLP"},
    "question-answering": {"color": "#8b5cf6", "category": "NLP"},
    "text-classification": {"color": "#8b5cf6", "category": "NLP"},
    "token-classification": {"color": "#8b5cf6", "category": "NLP"},
    "text-generation": {"color": "#10b981", "category": "Text Generation"},
    "text2text-generation": {"color": "#10b981", "category": "Text Generation"},
    "audio-classification": {"color": "#f59e0b", "category": "Audio"},
    "automatic-speech-recognition": {"color": "#f59e0b", "category": "Audio"},
    "audio-frame-classification": {"color": "#f59e0b", "category": "Audio"},
    "audio-xvector": {"color": "#f59e0b", "category": "Audio"},
    "image-classification": {"color": "#ef4444", "category": "Vision"},
    "object-detection": {"color": "#ef4444", "category": "Vision"},
    "semantic-segmentation": {"color": "#ef4444", "category": "Vision"},
    "text-to-image": {"color": "#ec4899", "category": "Multimodal"},
    "image-to-image": {"color": "#ec4899", "category": "Multimodal"},
    "inpaint": {"color": "#ec4899", "category": "Multimodal"},
    "zero-shot-image-classification": {"color": "#ec4899", "category": "Multimodal"},
    "sentence-similarity": {"color": "#06b6d4", "category": "Similarity"},
}

TAGS = {
    "Feature Extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
    "NLP": {"color": "#8b5cf6", "category": "NLP"},
    "Text Generation": {"color": "#10b981", "category": "Text Generation"},
    "Audio": {"color": "#f59e0b", "category": "Audio"},
    "Vision": {"color": "#ef4444", "category": "Vision"},
    "Multimodal": {"color": "#ec4899", "category": "Multimodal"},
    "Similarity": {"color": "#06b6d4", "category": "Similarity"},
}

# Get all tasks for dropdown
ALL_TASKS = list(TASK_CATEGORIES.keys())

def create_task_tag(task: str) -> str:
    """Create a colored HTML tag for a task"""
    if task in TASK_CATEGORIES:
        color = TASK_CATEGORIES[task]["color"]
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
    elif task in TAGS:
        color = TAGS[task]["color"]
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
    else:
        return f'<span style="background-color: #6b7280; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'

def format_tasks_for_table(tasks_str: str) -> str:
    """Convert comma-separated tasks into colored tags"""
    tasks = [task.strip() for task in tasks_str.split(',')]
    return ' '.join([create_task_tag(task) for task in tasks])


def neuron_export(model_id: str, task: str, oauth_token: gr.OAuthToken) -> str:
    if oauth_token.token is None:
        return "You must be logged in to use this space"

    if not model_id:
        return f"### Invalid input 🐞 Please specify a model name, got {model_id}"

    try:
        api = HfApi(token=oauth_token.token)

        error, commit_info = convert(api=api, model_id=model_id, task=task, token=oauth_token.token)
        if error != "0":
            return error

        print("[commit_info]", commit_info)

        # Save in a private dataset if repo initialized
        if repo is not None:
            repo.git_pull(rebase=True)
            with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile:
                writer = csv.DictWriter(
                    csvfile, fieldnames=["model_id", "pr_url", "time"]
                )
                writer.writerow(
                    {
                        "model_id": model_id,
                        "pr_url": commit_info.pr_url,
                        "time": str(datetime.now()),
                    }
                )
            commit_url = repo.push_to_hub()
            print("[dataset]", commit_url)

        pr_revision = commit_info.pr_revision.replace("/", "%2F")
        return f"#### Success πŸ”₯ Yay! This model was successfully exported and a PR was opened using your token: [{commit_info.pr_url}]({commit_info.pr_url}). If you would like to use the exported model without waiting for the PR to be approved, head to https://huggingface.co/{model_id}/tree/{pr_revision}"

    except Exception as e:
        return f"#### Error: {e}"


TITLE_IMAGE = """
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="https://huggingface.co/spaces/optimum/neuron-export/resolve/main/huggingfaceXneuron.png"/>
</div>
"""

TITLE = """
<div style="text-align: center; max-width: 1400px; margin: 0 auto;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px; font-size: 2.2rem;">
    πŸ€— Optimum Neuron Model Exporter 🏎️ (WIP)
</h1>
</div>
"""

DESCRIPTION = """
This Space allows you to automatically export πŸ€— transformers models hosted on the Hugging Face Hub to AWS Neuron-optimized format for Inferentia/Trainium acceleration. It opens a PR on the target model, and it is up to the owner of the original model to merge the PR to allow people to leverage Neuron optimization!

**Features:**
- Automatically opens PR with Neuron-optimized model
- Preserves original model weights
- Adds proper tags to model card

**Requirements:**
- Model must be compatible with [Optimum Neuron](https://huggingface.co/docs/optimum-neuron)
- User must be logged in with write token
"""

# Custom CSS to fix dark mode compatibility and transparency issues
CUSTOM_CSS = """
/* Fix for HuggingfaceHubSearch component visibility in both light and dark modes */
.gradio-container .gr-form {
    background: var(--background-fill-primary) !important;
    border: 1px solid var(--border-color-primary) !important;
}

/* Ensure text is visible in both modes */
.gradio-container input[type="text"], 
.gradio-container textarea,
.gradio-container .gr-textbox input {
    color: var(--body-text-color) !important;
    background: var(--input-background-fill) !important;
    border: 1px solid var(--border-color-primary) !important;
}

/* Fix dropdown/search results visibility */
.gradio-container .gr-dropdown,
.gradio-container .gr-dropdown .gr-box,
.gradio-container [data-testid="textbox"] {
    background: var(--background-fill-primary) !important;
    color: var(--body-text-color) !important;
    border: 1px solid var(--border-color-primary) !important;
}

/* Fix for search component specifically */
.gradio-container .gr-form > div,
.gradio-container .gr-form input {
    background: var(--input-background-fill) !important;
    color: var(--body-text-color) !important;
}

/* Ensure proper contrast for placeholder text */
.gradio-container input::placeholder {
    color: var(--body-text-color-subdued) !important;
    opacity: 0.7;
}

/* Fix any remaining transparent backgrounds */
.gradio-container .gr-box,
.gradio-container .gr-panel {
    background: var(--background-fill-primary) !important;
}

/* Make sure search results are visible */
.gradio-container .gr-dropdown-item {
    color: var(--body-text-color) !important;
    background: var(--background-fill-primary) !important;
}

.gradio-container .gr-dropdown-item:hover {
    background: var(--background-fill-secondary) !important;
}

/* Task tag styling improvements */
.task-tags {
    line-height: 1.8;
}

.task-tags span {
    display: inline-block;
    margin: 2px;
}
"""

with gr.Blocks(css=CUSTOM_CSS) as demo:
    # Login requirement notice and button
    gr.Markdown("**You must be logged in to use this space**")
    gr.LoginButton(min_width=250)
    
    # Centered title and image
    gr.HTML(TITLE_IMAGE)
    gr.HTML(TITLE)
    
    # Full-width description
    gr.Markdown(DESCRIPTION)
    
    with gr.Tabs():
        with gr.Tab("Export Model"):
            # Input controls in a row
            with gr.Row():
                input_model = HuggingfaceHubSearch(
                    label="Hub model ID",
                    placeholder="Search for model ID on the hub",
                    search_type="model",
                )
                input_task = gr.Dropdown(
                    choices=ALL_TASKS,
                    value="auto",
                    label='Task (auto could infer task from model)',
                )
            
            # Export button below the inputs
            btn = gr.Button("Export to Neuron", size="lg")
            
            # Output section
            output = gr.Markdown(label="Output")

            btn.click(
                fn=neuron_export,
                inputs=[input_model, input_task],
                outputs=output,
            )
        
        with gr.Tab("Supported Architectures"):
            gr.HTML(f"""
            <div style="margin-bottom: 20px;">
                <h3>🎨 Task Categories Legend</h3>
                <div class="task-tags">
                    {create_task_tag("Feature Extraction")} 
                    {create_task_tag("NLP")}
                    {create_task_tag("Text Generation")}
                    {create_task_tag("Audio")}
                    {create_task_tag("Vision")}
                    {create_task_tag("Multimodal")}
                    {create_task_tag("Similarity")}
                </div>
            </div>
            """)
            
            gr.HTML(f"""
            <h2>πŸ€— Transformers</h2>
            <table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
                <colgroup>
                    <col style="width: 30%;">
                    <col style="width: 70%;">
                </colgroup>
                <thead>
                    <tr style="background-color: var(--background-fill-secondary);">
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
                    </tr>
                </thead>
                <tbody>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ALBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">AST</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, audio-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BLOOM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Beit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CamemBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNext</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNextV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CvT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa-v2  (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Deit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DistilBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DonutSwin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Dpt</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ELECTRA</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ESM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">FlauBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">GPT2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Hubert</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Levit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Llama, Llama 2, Llama 3</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mistral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mixtral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileNetV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ModernBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MPNet</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">OPT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Phi</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoFormer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Swin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">T5</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text2text-generation")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech-SAT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Wav2Vec2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">WavLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Whisper</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("automatic-speech-recognition")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM-RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Yolos</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, object-detection")}</td></tr>
                </tbody>
            </table>

            <h2>🧨 Diffusers</h2>
            <table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
                <colgroup>
                    <col style="width: 30%;">
                    <col style="width: 70%;">
                </colgroup>
                <thead>
                    <tr style="background-color: var(--background-fill-secondary);">
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
                    </tr>
                </thead>
                <tbody>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Base</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Refiner</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">SDXL Turbo</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">LCM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Ξ±</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Ξ£</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
                </tbody>
            </table>

            <h2>πŸ€– Sentence Transformers</h2>
            <table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
                <colgroup>
                    <col style="width: 30%;">
                    <col style="width: 70%;">
                </colgroup>
                <thead>
                    <tr style="background-color: var(--background-fill-secondary);">
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
                        <th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
                    </tr>
                </thead>
                <tbody>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Transformer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, sentence-similarity")}</td></tr>
                    <tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, zero-shot-image-classification")}</td></tr>
                </tbody>
            </table>

            <div style="margin-top: 20px;">
                <p>πŸ’‘ <strong>Note</strong>: Some architectures may have specific requirements or limitations. DeBERTa models are only supported on INF2 instances.</p>
                <p>For more details, check the <a href="https://huggingface.co/docs/optimum-neuron" target="_blank">Optimum Neuron documentation</a>.</p>
            </div>
            """)
    
    # Add spacing between tabs and content
    gr.Markdown("<br><br><br><br>")

if __name__ == "__main__":
    def restart_space():
        if HF_TOKEN:
            HfApi().restart_space(repo_id="optimum/neuron-export", token=HF_TOKEN, factory_reboot=True)

    scheduler = BackgroundScheduler()
    scheduler.add_job(restart_space, "interval", seconds=21600)  # Restart every 6 hours
    scheduler.start()

    demo.launch()