File size: 16,602 Bytes
eb1b90d 6ff22d6 6033033 6ff22d6 eb1b90d 6ff22d6 eb1b90d 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 57ee8d3 6ff22d6 fe57b03 6ff22d6 fe57b03 6ff22d6 02544bc 6ff22d6 eb1b90d 6ff22d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import gradio as gr
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import base64
import time
import json
import logging
import tempfile
import uuid
import io
from PIL import Image
from openai import OpenAI
from ultralytics import YOLO
from wrapper import process_image_description
from utils.pills import preprocess_image
import cv2
import cv2.dnn_superres as dnn_superres
import easyocr
from spellchecker import SpellChecker
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s')
GLOBAL_SR = None
GLOBAL_READER = None
GLOBAL_SPELL = None
YOLO_MODEL = None
def load_models():
"""
Called once to load all necessary models into memory.
"""
global GLOBAL_SR, GLOBAL_READER, GLOBAL_SPELL, YOLO_MODEL
logging.info("Loading all models...")
start_time_total = time.perf_counter()
# Super-resolution
logging.info("Loading super-resolution model...")
start_time = time.perf_counter()
sr = None
model_path = "EDSR_x4.pb"
if os.path.exists(model_path):
if hasattr(cv2, 'dnn_superres'):
try:
sr = dnn_superres.DnnSuperResImpl_create()
except AttributeError:
sr = dnn_superres.DnnSuperResImpl()
sr.readModel(model_path)
sr.setModel('edsr', 4)
GLOBAL_SR = sr
logging.info("Super-resolution model loaded.")
else:
logging.warning("cv2.dnn_superres module not available.")
else:
logging.warning(f"Super-resolution model file not found: {model_path}. Skipping SR.")
logging.info(f"Super-resolution init took {time.perf_counter()-start_time:.3f}s.")
# EasyOCR + SpellChecker
logging.info("Loading OCR + SpellChecker...")
start_time = time.perf_counter()
GLOBAL_READER = easyocr.Reader(['en'], gpu=True)
GLOBAL_SPELL = SpellChecker()
logging.info(f"OCR + SpellChecker init took {time.perf_counter()-start_time:.3f}s.")
# YOLO Model
logging.info("Loading YOLO model...")
start_time = time.perf_counter()
yolo_weights = "best.pt"
if os.path.exists(yolo_weights):
YOLO_MODEL = YOLO(yolo_weights)
logging.info("YOLO model loaded.")
else:
logging.error(f"YOLO weights file '{yolo_weights}' not found! Endpoints will fail.")
logging.info(f"YOLO init took {time.perf_counter()-start_time:.3f}s.")
logging.info(f"Total model loading time: {time.perf_counter()-start_time_total:.3f}s.")
def pil_to_base64_str(pil_image, format="PNG"):
"""Converts a PIL Image to a base64 string with a data URI header."""
buffered = io.BytesIO()
pil_image.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/{format.lower()};base64,{img_str}"
def save_base64_image(image_data: str, file_path: str):
"""Saves a base64 encoded image to a file."""
if image_data.startswith("data:image"):
_, image_data = image_data.split(",", 1)
img_bytes = base64.b64decode(image_data)
with open(file_path, "wb") as f:
f.write(img_bytes)
return img_bytes
def run_wrapper(image_path: str, output_dir: str, skip_ocr: bool = False, skip_spell: bool = False, json_mini=False) -> str:
"""Calls the main processing script and returns the result."""
process_image_description(
input_image=image_path,
weights_file="best.pt",
output_dir=output_dir,
no_captioning=True,
output_json=True,
json_mini=json_mini,
model_obj=YOLO_MODEL,
sr=GLOBAL_SR,
spell=None if skip_ocr else GLOBAL_SPELL,
reader=None if skip_ocr else GLOBAL_READER,
skip_ocr=skip_ocr,
skip_spell=skip_spell,
)
base_name = os.path.splitext(os.path.basename(image_path))[0]
result_dir = os.path.join(output_dir, "result")
json_file = os.path.join(result_dir, f"{base_name}.json")
if os.path.exists(json_file):
with open(json_file, "r", encoding="utf-8") as f:
return f.read()
else:
raise FileNotFoundError(f"Result file not generated: {json_file}")
def handle_action(openai_key, image, prompt):
if not openai_key: return "Error: OpenAI API Key is required for /action."
if image is None: return "Error: Please upload an image."
if not prompt: return "Error: Please provide a prompt."
try:
llm_client = OpenAI(api_key=openai_key)
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
request_id = str(uuid.uuid4())
original_image_path = os.path.join(temp_dir, f"{request_id}.png")
yolo_updated_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
save_base64_image(image_b64, original_image_path)
image_description = run_wrapper(original_image_path, temp_dir, skip_ocr=False, skip_spell=True, json_mini=True)
if not os.path.exists(yolo_updated_image_path):
raise FileNotFoundError(f"YOLO updated image not found at {yolo_updated_image_path}")
with open(yolo_updated_image_path, "rb") as f:
yolo_updated_img_bytes = f.read()
_, new_b64 = preprocess_image(yolo_updated_img_bytes, threshold=2000, scale=0.5, fmt="png")
base64_image_url = f"data:image/png;base64,{new_b64}"
prompt_text = f"""You are an AI agent that controls a mobile device and sees the content of screen.
User can ask you about some information or to do some task and you need to do these tasks.
You can only respond with one of these commands (in quotes) but some variables are dynamic
and can be changed based on the context:
1. "Swipe left. From start coordinates 300, 400" (or other coordinates) (Goes right)
2. "Swipe right. From start coordinates 500, 650" (or other coordinates) (Goes left)
3. "Swipe top. From start coordinates 600, 510" (or other coordinates) (Goes bottom)
4. "Swipe bottom. From start coordinates 640, 500" (or other coordinates) (Goes top)
5. "Go home"
6. "Go back"
8. "Open com.whatsapp" (or other app)
9. "Tap coordinates 160, 820" (or other coordinates)
10. "Insert text 210, 820:Hello world" (or other coordinates and text)
11. "Screen is in a loading state. Try again" (send image again)
12. "Answer: There are no new important mails today" (or other answer)
13. "Finished" (task is finished)
14. "Can't proceed" (can't understand what to do or image has problem etc.)
The user said: "{prompt}"
I will share the screenshot of the current state of the phone (with UI elements highlighted and the corresponding
index of these UI elements) and the description (sizes, coordinates and indexes) of UI elements.
Description:
"{image_description}" """
messages = [
{"role": "user", "content": [
{"type": "text", "text": prompt_text},
# We are correctly sending the YOLO-annotated image here
{"type": "image_url", "image_url": {"url": base64_image_url, "detail": "high"}}
]}
]
response = llm_client.chat.completions.create(model="gpt-4.1", messages=messages, temperature=0.2)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"Error in /action endpoint: {e}", exc_info=True)
return f"An error occurred: {e}"
def handle_analyze(image, output_style):
if image is None: return "Error: Please upload an image."
try:
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
image_path = os.path.join(temp_dir, "image_to_analyze.png")
save_base64_image(image_b64, image_path)
is_mini = (output_style == "mini JSON")
description_str = run_wrapper(image_path=image_path, output_dir=temp_dir, json_mini=is_mini)
parsed_json = json.loads(description_str)
return json.dumps(parsed_json, indent=2)
except Exception as e:
logging.error(f"Error in /analyze endpoint: {e}", exc_info=True)
return f"An error occurred: {e}"
def handle_analyze_yolo(image, output_style):
if image is None: return None, "Error: Please upload an image."
try:
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
request_id = str(uuid.uuid4())
image_path = os.path.join(temp_dir, f"{request_id}.png")
yolo_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
save_base64_image(image_b64, image_path)
is_mini = (output_style == "mini JSON")
description_str = run_wrapper(image_path=image_path, output_dir=temp_dir, json_mini=is_mini)
parsed_json = json.loads(description_str)
description_output = json.dumps(parsed_json, indent=2)
yolo_image_result = Image.open(yolo_image_path)
return yolo_image_result, description_output
except Exception as e:
logging.error(f"Error in /analyze_and_get_yolo: {e}", exc_info=True)
return None, f"An error occurred: {e}"
def handle_generate(openai_key, image, prompt):
if not openai_key: return "Error: OpenAI API Key is required for /generate."
if image is None: return "Error: Please upload an image."
if not prompt: return "Error: Please provide a prompt."
try:
llm_client = OpenAI(api_key=openai_key)
image_b64 = pil_to_base64_str(image)
with tempfile.TemporaryDirectory() as temp_dir:
request_id = str(uuid.uuid4())
original_image_path = os.path.join(temp_dir, f"{request_id}.png")
yolo_updated_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
save_base64_image(image_b64, original_image_path)
image_description = run_wrapper(image_path=original_image_path, output_dir=temp_dir, json_mini=False)
if not os.path.exists(yolo_updated_image_path):
raise FileNotFoundError(f"YOLO updated image not found at {yolo_updated_image_path}")
with open(yolo_updated_image_path, "rb") as f:
yolo_updated_img_bytes = f.read()
_, new_b64 = preprocess_image(yolo_updated_img_bytes, threshold=1500, scale=0.5, fmt="png")
base64_image_url = f"data:image/png;base64,{new_b64}"
prompt_text = f'"Prompt: {prompt}"\nImage description:\n"{image_description}"'
messages = [
{"role": "user", "content": [
{"type": "text", "text": prompt_text},
{"type": "image_url", "image_url": {"url": base64_image_url, "detail": "high"}}
]}
]
response = llm_client.chat.completions.create(model="gpt-4.1", messages=messages, temperature=0.2)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"Error in /generate endpoint: {e}", exc_info=True)
return f"An error occurred: {e}"
default_image_1 = Image.open("./res/bb_1.jpeg")
default_image_2 = Image.open("./res/mfa_1.jpeg")
def load_example_action_1(): return default_image_1, "Open and read Umico partner"
def load_example_action_2(): return default_image_2, "Sign up in the application"
def load_example_analyze_1(): return default_image_1
def load_example_analyze_2(): return default_image_2
def load_example_yolo_1(): return default_image_1
def load_example_yolo_2(): return default_image_2
def load_example_generate_1(): return default_image_1, "Generate the code for this screen for Android XML. Try to use constraint layout"
def load_example_generate_2(): return default_image_2, "Generate the code for this screen for Android XML. Try to use constraint layout"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# deki: Describe mobile UI screenshots to enable AI agentic capabilities")
gr.Markdown("Provide your API keys below. The OpenAI key is only required for the 'Action' and 'Generate' tabs.")
with gr.Row():
openai_key_input = gr.Textbox(label="OpenAI API Key", placeholder="Enter your OpenAI API Key", type="password", scale=1)
with gr.Tabs():
with gr.TabItem("Action"):
gr.Markdown("### Control a device with natural language.")
with gr.Row():
image_input_action = gr.Image(type="pil", label="Upload Screen Image")
prompt_input_action = gr.Textbox(lines=2, placeholder="e.g., 'Open whatsapp and text my friend...'", label="Prompt")
action_output = gr.Textbox(label="Response Command")
action_button = gr.Button("Run Action", variant="primary")
with gr.Row():
example_action_btn1 = gr.Button("Load Example 1")
example_action_btn2 = gr.Button("Load Example 2")
with gr.TabItem("Analyze"):
gr.Markdown("### Get a structured JSON description of the UI elements.")
with gr.Row():
image_input_analyze = gr.Image(type="pil", label="Upload Screen Image")
with gr.Column():
output_style_analyze = gr.Radio(["Standard JSON", "mini JSON"], label="Output Format", value="Standard JSON")
analyze_button = gr.Button("Analyze Image", variant="primary")
analyze_output = gr.JSON(label="JSON Description")
with gr.Row():
example_analyze_btn1 = gr.Button("Load Example 1")
example_analyze_btn2 = gr.Button("Load Example 2")
with gr.TabItem("Analyze & Get YOLO"):
gr.Markdown("### Get a JSON description and the image with detected elements.")
with gr.Row():
image_input_yolo = gr.Image(type="pil", label="Upload Screen Image")
with gr.Column():
output_style_yolo = gr.Radio(["Standard JSON", "mini JSON"], label="Output Format", value="Standard JSON")
yolo_button = gr.Button("Analyze and Visualize", variant="primary")
with gr.Row():
yolo_image_output = gr.Image(label="YOLO Annotated Image")
description_output_yolo = gr.JSON(label="JSON Description")
with gr.Row():
example_yolo_btn1 = gr.Button("Load Example 1")
example_yolo_btn2 = gr.Button("Load Example 2")
with gr.TabItem("Generate"):
gr.Markdown("### Generate code or text based on a screenshot.")
with gr.Row():
image_input_generate = gr.Image(type="pil", label="Upload Screen Image")
prompt_input_generate = gr.Textbox(lines=2, placeholder="e.g., 'Generate the Android XML for this screen'", label="Prompt")
generate_output = gr.Code(label="Generated Output")
generate_button = gr.Button("Generate", variant="primary")
with gr.Row():
example_generate_btn1 = gr.Button("Load Example 1")
example_generate_btn2 = gr.Button("Load Example 2")
action_button.click(fn=handle_action, inputs=[openai_key_input, image_input_action, prompt_input_action], outputs=action_output)
analyze_button.click(fn=handle_analyze, inputs=[image_input_analyze, output_style_analyze], outputs=analyze_output)
yolo_button.click(fn=handle_analyze_yolo, inputs=[image_input_yolo, output_style_yolo], outputs=[yolo_image_output, description_output_yolo])
generate_button.click(fn=handle_generate, inputs=[openai_key_input, image_input_generate, prompt_input_generate], outputs=generate_output)
example_action_btn1.click(fn=load_example_action_1, outputs=[image_input_action, prompt_input_action])
example_action_btn2.click(fn=load_example_action_2, outputs=[image_input_action, prompt_input_action])
example_analyze_btn1.click(fn=load_example_analyze_1, outputs=image_input_analyze)
example_analyze_btn2.click(fn=load_example_analyze_2, outputs=image_input_analyze)
example_yolo_btn1.click(fn=load_example_yolo_1, outputs=image_input_yolo)
example_yolo_btn2.click(fn=load_example_yolo_2, outputs=image_input_yolo)
example_generate_btn1.click(fn=load_example_generate_1, outputs=[image_input_generate, prompt_input_generate])
example_generate_btn2.click(fn=load_example_generate_2, outputs=[image_input_generate, prompt_input_generate])
load_models()
demo.launch()
|