File size: 16,602 Bytes
eb1b90d
6ff22d6
6033033
6ff22d6
 
 
 
 
 
 
eb1b90d
6ff22d6
 
 
eb1b90d
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe57b03
 
6ff22d6
 
 
 
 
 
fe57b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff22d6
fe57b03
 
 
 
 
 
 
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe57b03
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe57b03
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe57b03
 
6ff22d6
 
 
 
 
 
fe57b03
 
 
6ff22d6
 
fe57b03
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57ee8d3
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe57b03
6ff22d6
 
 
 
 
 
 
 
 
 
 
fe57b03
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
02544bc
6ff22d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb1b90d
6ff22d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import gradio as gr
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import base64
import time
import json
import logging
import tempfile
import uuid
import io

from PIL import Image
from openai import OpenAI
from ultralytics import YOLO

from wrapper import process_image_description
from utils.pills import preprocess_image
import cv2
import cv2.dnn_superres as dnn_superres
import easyocr
from spellchecker import SpellChecker

logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s')

GLOBAL_SR = None
GLOBAL_READER = None
GLOBAL_SPELL = None
YOLO_MODEL = None

def load_models():
    """
    Called once to load all necessary models into memory.
    """
    global GLOBAL_SR, GLOBAL_READER, GLOBAL_SPELL, YOLO_MODEL

    logging.info("Loading all models...")
    start_time_total = time.perf_counter()

    # Super-resolution
    logging.info("Loading super-resolution model...")
    start_time = time.perf_counter()
    sr = None
    model_path = "EDSR_x4.pb"
    if os.path.exists(model_path):
        if hasattr(cv2, 'dnn_superres'):
            try:
                sr = dnn_superres.DnnSuperResImpl_create()
            except AttributeError:
                sr = dnn_superres.DnnSuperResImpl()
            sr.readModel(model_path)
            sr.setModel('edsr', 4)
            GLOBAL_SR = sr
            logging.info("Super-resolution model loaded.")
        else:
            logging.warning("cv2.dnn_superres module not available.")
    else:
        logging.warning(f"Super-resolution model file not found: {model_path}. Skipping SR.")
    logging.info(f"Super-resolution init took {time.perf_counter()-start_time:.3f}s.")

    # EasyOCR + SpellChecker
    logging.info("Loading OCR + SpellChecker...")
    start_time = time.perf_counter()
    GLOBAL_READER = easyocr.Reader(['en'], gpu=True)
    GLOBAL_SPELL = SpellChecker()
    logging.info(f"OCR + SpellChecker init took {time.perf_counter()-start_time:.3f}s.")

    # YOLO Model
    logging.info("Loading YOLO model...")
    start_time = time.perf_counter()
    yolo_weights = "best.pt"
    if os.path.exists(yolo_weights):
        YOLO_MODEL = YOLO(yolo_weights)
        logging.info("YOLO model loaded.")
    else:
        logging.error(f"YOLO weights file '{yolo_weights}' not found! Endpoints will fail.")
    logging.info(f"YOLO init took {time.perf_counter()-start_time:.3f}s.")
    
    logging.info(f"Total model loading time: {time.perf_counter()-start_time_total:.3f}s.")


def pil_to_base64_str(pil_image, format="PNG"):
    """Converts a PIL Image to a base64 string with a data URI header."""
    buffered = io.BytesIO()
    pil_image.save(buffered, format=format)
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return f"data:image/{format.lower()};base64,{img_str}"

def save_base64_image(image_data: str, file_path: str):
    """Saves a base64 encoded image to a file."""
    if image_data.startswith("data:image"):
        _, image_data = image_data.split(",", 1)
    img_bytes = base64.b64decode(image_data)
    with open(file_path, "wb") as f:
        f.write(img_bytes)
    return img_bytes

def run_wrapper(image_path: str, output_dir: str, skip_ocr: bool = False, skip_spell: bool = False, json_mini=False) -> str:
    """Calls the main processing script and returns the result."""
    process_image_description(
        input_image=image_path,
        weights_file="best.pt",
        output_dir=output_dir,
        no_captioning=True,
        output_json=True,
        json_mini=json_mini,
        model_obj=YOLO_MODEL,
        sr=GLOBAL_SR,
        spell=None if skip_ocr else GLOBAL_SPELL,
        reader=None if skip_ocr else GLOBAL_READER,
        skip_ocr=skip_ocr,
        skip_spell=skip_spell,
    )
    base_name = os.path.splitext(os.path.basename(image_path))[0]
    result_dir = os.path.join(output_dir, "result")
    json_file = os.path.join(result_dir, f"{base_name}.json")
    if os.path.exists(json_file):
        with open(json_file, "r", encoding="utf-8") as f:
            return f.read()
    else:
        raise FileNotFoundError(f"Result file not generated: {json_file}")

def handle_action(openai_key, image, prompt):
    if not openai_key: return "Error: OpenAI API Key is required for /action."
    if image is None: return "Error: Please upload an image."
    if not prompt: return "Error: Please provide a prompt."

    try:
        llm_client = OpenAI(api_key=openai_key)
        image_b64 = pil_to_base64_str(image)
        
        with tempfile.TemporaryDirectory() as temp_dir:
            request_id = str(uuid.uuid4())
            original_image_path = os.path.join(temp_dir, f"{request_id}.png")
            yolo_updated_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
            save_base64_image(image_b64, original_image_path)
            
            image_description = run_wrapper(original_image_path, temp_dir, skip_ocr=False, skip_spell=True, json_mini=True)
            
            if not os.path.exists(yolo_updated_image_path):
                raise FileNotFoundError(f"YOLO updated image not found at {yolo_updated_image_path}")
            with open(yolo_updated_image_path, "rb") as f:
                yolo_updated_img_bytes = f.read()
            
            _, new_b64 = preprocess_image(yolo_updated_img_bytes, threshold=2000, scale=0.5, fmt="png")

        base64_image_url = f"data:image/png;base64,{new_b64}"

        prompt_text = f"""You are an AI agent that controls a mobile device and sees the content of screen.
User can ask you about some information or to do some task and you need to do these tasks.
You can only respond with one of these commands (in quotes) but some variables are dynamic
and can be changed based on the context:
1. "Swipe left. From start coordinates 300, 400" (or other coordinates) (Goes right)
2. "Swipe right. From start coordinates 500, 650" (or other coordinates) (Goes left)
3. "Swipe top. From start coordinates 600, 510" (or other coordinates) (Goes bottom)
4. "Swipe bottom. From start coordinates 640, 500" (or other coordinates) (Goes top)
5. "Go home"
6. "Go back"
8. "Open com.whatsapp" (or other app)
9. "Tap coordinates 160, 820" (or other coordinates)
10. "Insert text 210, 820:Hello world" (or other coordinates and text)
11. "Screen is in a loading state. Try again" (send image again)
12. "Answer: There are no new important mails today" (or other answer)
13. "Finished" (task is finished)
14. "Can't proceed" (can't understand what to do or image has problem etc.)

The user said: "{prompt}"

I will share the screenshot of the current state of the phone (with UI elements highlighted and the corresponding 
index of these UI elements) and the description (sizes, coordinates and indexes) of UI elements.
Description:
"{image_description}" """
        
        messages = [
            {"role": "user", "content": [
                {"type": "text", "text": prompt_text},
                # We are correctly sending the YOLO-annotated image here
                {"type": "image_url", "image_url": {"url": base64_image_url, "detail": "high"}}
            ]}
        ]
        
        response = llm_client.chat.completions.create(model="gpt-4.1", messages=messages, temperature=0.2)
        return response.choices[0].message.content.strip()

    except Exception as e:
        logging.error(f"Error in /action endpoint: {e}", exc_info=True)
        return f"An error occurred: {e}"

def handle_analyze(image, output_style):
    if image is None: return "Error: Please upload an image."
    
    try:
        image_b64 = pil_to_base64_str(image)
        with tempfile.TemporaryDirectory() as temp_dir:
            image_path = os.path.join(temp_dir, "image_to_analyze.png")
            save_base64_image(image_b64, image_path)
            
            is_mini = (output_style == "mini JSON")
            description_str = run_wrapper(image_path=image_path, output_dir=temp_dir, json_mini=is_mini)
            
            parsed_json = json.loads(description_str)
            return json.dumps(parsed_json, indent=2)

    except Exception as e:
        logging.error(f"Error in /analyze endpoint: {e}", exc_info=True)
        return f"An error occurred: {e}"

def handle_analyze_yolo(image, output_style):
    if image is None: return None, "Error: Please upload an image."

    try:
        image_b64 = pil_to_base64_str(image)
        with tempfile.TemporaryDirectory() as temp_dir:
            request_id = str(uuid.uuid4())
            image_path = os.path.join(temp_dir, f"{request_id}.png")
            yolo_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
            save_base64_image(image_b64, image_path)

            is_mini = (output_style == "mini JSON")
            description_str = run_wrapper(image_path=image_path, output_dir=temp_dir, json_mini=is_mini)

            parsed_json = json.loads(description_str)
            description_output = json.dumps(parsed_json, indent=2)
            
            yolo_image_result = Image.open(yolo_image_path)
            return yolo_image_result, description_output

    except Exception as e:
        logging.error(f"Error in /analyze_and_get_yolo: {e}", exc_info=True)
        return None, f"An error occurred: {e}"

def handle_generate(openai_key, image, prompt):
    if not openai_key: return "Error: OpenAI API Key is required for /generate."
    if image is None: return "Error: Please upload an image."
    if not prompt: return "Error: Please provide a prompt."

    try:
        llm_client = OpenAI(api_key=openai_key)
        image_b64 = pil_to_base64_str(image)

        with tempfile.TemporaryDirectory() as temp_dir:
            request_id = str(uuid.uuid4())
            original_image_path = os.path.join(temp_dir, f"{request_id}.png")
            yolo_updated_image_path = os.path.join(temp_dir, f"{request_id}_yolo_updated.png")
            save_base64_image(image_b64, original_image_path)

            image_description = run_wrapper(image_path=original_image_path, output_dir=temp_dir, json_mini=False)
            
            if not os.path.exists(yolo_updated_image_path):
                raise FileNotFoundError(f"YOLO updated image not found at {yolo_updated_image_path}")
            with open(yolo_updated_image_path, "rb") as f:
                yolo_updated_img_bytes = f.read()
            
            _, new_b64 = preprocess_image(yolo_updated_img_bytes, threshold=1500, scale=0.5, fmt="png")

        base64_image_url = f"data:image/png;base64,{new_b64}"
        
        prompt_text = f'"Prompt: {prompt}"\nImage description:\n"{image_description}"'
        
        messages = [
            {"role": "user", "content": [
                {"type": "text", "text": prompt_text},
                {"type": "image_url", "image_url": {"url": base64_image_url, "detail": "high"}}
            ]}
        ]
    
        response = llm_client.chat.completions.create(model="gpt-4.1", messages=messages, temperature=0.2)
        return response.choices[0].message.content.strip()

    except Exception as e:
        logging.error(f"Error in /generate endpoint: {e}", exc_info=True)
        return f"An error occurred: {e}"

default_image_1 = Image.open("./res/bb_1.jpeg")
default_image_2 = Image.open("./res/mfa_1.jpeg")

def load_example_action_1(): return default_image_1, "Open and read Umico partner"
def load_example_action_2(): return default_image_2, "Sign up in the application"
def load_example_analyze_1(): return default_image_1
def load_example_analyze_2(): return default_image_2
def load_example_yolo_1(): return default_image_1
def load_example_yolo_2(): return default_image_2
def load_example_generate_1(): return default_image_1, "Generate the code for this screen for Android XML. Try to use constraint layout"
def load_example_generate_2(): return default_image_2, "Generate the code for this screen for Android XML. Try to use constraint layout"


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# deki: Describe mobile UI screenshots to enable AI agentic capabilities")
    gr.Markdown("Provide your API keys below. The OpenAI key is only required for the 'Action' and 'Generate' tabs.")
    
    with gr.Row():
        openai_key_input = gr.Textbox(label="OpenAI API Key", placeholder="Enter your OpenAI API Key", type="password", scale=1)
    
    with gr.Tabs():
        with gr.TabItem("Action"):
            gr.Markdown("### Control a device with natural language.")
            with gr.Row():
                image_input_action = gr.Image(type="pil", label="Upload Screen Image")
                prompt_input_action = gr.Textbox(lines=2, placeholder="e.g., 'Open whatsapp and text my friend...'", label="Prompt")
            action_output = gr.Textbox(label="Response Command")
            action_button = gr.Button("Run Action", variant="primary")
            with gr.Row():
                example_action_btn1 = gr.Button("Load Example 1")
                example_action_btn2 = gr.Button("Load Example 2")
        
        with gr.TabItem("Analyze"):
            gr.Markdown("### Get a structured JSON description of the UI elements.")
            with gr.Row():
                image_input_analyze = gr.Image(type="pil", label="Upload Screen Image")
                with gr.Column():
                    output_style_analyze = gr.Radio(["Standard JSON", "mini JSON"], label="Output Format", value="Standard JSON")
                    analyze_button = gr.Button("Analyze Image", variant="primary")
            analyze_output = gr.JSON(label="JSON Description")
            with gr.Row():
                example_analyze_btn1 = gr.Button("Load Example 1")
                example_analyze_btn2 = gr.Button("Load Example 2")

        with gr.TabItem("Analyze & Get YOLO"):
            gr.Markdown("### Get a JSON description and the image with detected elements.")
            with gr.Row():
                image_input_yolo = gr.Image(type="pil", label="Upload Screen Image")
                with gr.Column():
                     output_style_yolo = gr.Radio(["Standard JSON", "mini JSON"], label="Output Format", value="Standard JSON")
                     yolo_button = gr.Button("Analyze and Visualize", variant="primary")
            with gr.Row():
                yolo_image_output = gr.Image(label="YOLO Annotated Image")
                description_output_yolo = gr.JSON(label="JSON Description")
            with gr.Row():
                example_yolo_btn1 = gr.Button("Load Example 1")
                example_yolo_btn2 = gr.Button("Load Example 2")

        with gr.TabItem("Generate"):
            gr.Markdown("### Generate code or text based on a screenshot.")
            with gr.Row():
                image_input_generate = gr.Image(type="pil", label="Upload Screen Image")
                prompt_input_generate = gr.Textbox(lines=2, placeholder="e.g., 'Generate the Android XML for this screen'", label="Prompt")
            generate_output = gr.Code(label="Generated Output")
            generate_button = gr.Button("Generate", variant="primary")
            with gr.Row():
                example_generate_btn1 = gr.Button("Load Example 1")
                example_generate_btn2 = gr.Button("Load Example 2")

    action_button.click(fn=handle_action, inputs=[openai_key_input, image_input_action, prompt_input_action], outputs=action_output)
    analyze_button.click(fn=handle_analyze, inputs=[image_input_analyze, output_style_analyze], outputs=analyze_output)
    yolo_button.click(fn=handle_analyze_yolo, inputs=[image_input_yolo, output_style_yolo], outputs=[yolo_image_output, description_output_yolo])
    generate_button.click(fn=handle_generate, inputs=[openai_key_input, image_input_generate, prompt_input_generate], outputs=generate_output)

    example_action_btn1.click(fn=load_example_action_1, outputs=[image_input_action, prompt_input_action])
    example_action_btn2.click(fn=load_example_action_2, outputs=[image_input_action, prompt_input_action])
    example_analyze_btn1.click(fn=load_example_analyze_1, outputs=image_input_analyze)
    example_analyze_btn2.click(fn=load_example_analyze_2, outputs=image_input_analyze)
    example_yolo_btn1.click(fn=load_example_yolo_1, outputs=image_input_yolo)
    example_yolo_btn2.click(fn=load_example_yolo_2, outputs=image_input_yolo)
    example_generate_btn1.click(fn=load_example_generate_1, outputs=[image_input_generate, prompt_input_generate])
    example_generate_btn2.click(fn=load_example_generate_2, outputs=[image_input_generate, prompt_input_generate])

load_models()
demo.launch()