osamos360's picture
changed from main.py to app.py
38f91ea
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation, YolosImageProcessor, YolosForObjectDetection
from PIL import Image
import torch
import torch.nn as nn
import numpy as np
import cv2
import io
import base64
app = FastAPI(title="Fashion Detection API", version="1.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global models
seg_processor = None
seg_model = None
obj_processor = None
obj_model = None
@app.on_event("startup")
async def load_models():
"""Load both models on startup"""
global seg_processor, seg_model, obj_processor, obj_model
print("Loading models...")
seg_processor = SegformerImageProcessor.from_pretrained("mattmdjaga/segformer_b2_clothes")
seg_model = AutoModelForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
obj_processor = YolosImageProcessor.from_pretrained("valentinafeve/yolos-fashionpedia")
obj_model = YolosForObjectDetection.from_pretrained("valentinafeve/yolos-fashionpedia")
print("✅ Models loaded!")
def detect_clothing_items(image):
"""Detect main clothing using segmentation"""
MAIN_CLOTHING = {4: "Upper-clothes", 6: "Pants", 5: "Skirt", 7: "Dress", 8: "Belt", 9: "Left-shoe", 10: "Right-shoe", 16: "Bag"}
# Segmentation
seg_inputs = seg_processor(images=image, return_tensors="pt")
with torch.no_grad():
seg_outputs = seg_model(**seg_inputs)
logits = seg_outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(logits, size=image.size[::-1], mode="bilinear", align_corners=False)
pred_seg = upsampled_logits.argmax(dim=1)[0].numpy()
items = []
for label_id, label_name in MAIN_CLOTHING.items():
item_mask = (pred_seg == label_id).astype(np.uint8)
if np.sum(item_mask) < 500:
continue
contours, _ = cv2.findContours(item_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
continue
for i, contour in enumerate(contours):
if cv2.contourArea(contour) < 500:
continue
x, y, w, h = cv2.boundingRect(contour)
if w < 50 or h < 50:
continue
# Add padding
padding = 15
x1 = max(0, x - padding)
y1 = max(0, y - padding)
x2 = min(image.width, x + w + padding)
y2 = min(image.height, y + h + padding)
# Crop and convert to base64
cropped = image.crop((x1, y1, x2, y2))
buffer = io.BytesIO()
cropped.save(buffer, format="PNG")
img_base64 = base64.b64encode(buffer.getvalue()).decode()
items.append({
"type": label_name,
"confidence": round(cv2.contourArea(contour) / ((x2-x1) * (y2-y1)), 2),
"bbox": [x1, y1, x2, y2],
"image": img_base64
})
return items
def detect_accessories(image):
"""Detect accessories using object detection"""
accessory_map = {'glasses': 'Glasses', 'hat': 'Hat', 'watch': 'Watch', 'scarf': 'Scarf', 'tie': 'Tie', 'glove': 'Glove'}
inputs = obj_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = obj_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = obj_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.5)[0]
items = []
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
label_name = obj_model.config.id2label[label.item()]
if label_name in accessory_map:
x1, y1, x2, y2 = [int(coord) for coord in box.tolist()]
if (x2 - x1) < 30 or (y2 - y1) < 30:
continue
# Add padding
padding = 10
x1 = max(0, x1 - padding)
y1 = max(0, y1 - padding)
x2 = min(image.width, x2 + padding)
y2 = min(image.height, y2 + padding)
# Crop and convert to base64
cropped = image.crop((x1, y1, x2, y2))
buffer = io.BytesIO()
cropped.save(buffer, format="PNG")
img_base64 = base64.b64encode(buffer.getvalue()).decode()
items.append({
"type": accessory_map[label_name],
"confidence": round(score.item(), 2),
"bbox": [x1, y1, x2, y2],
"image": img_base64
})
return items
@app.post("/detect")
async def detect_fashion_items(file: UploadFile = File(...)):
"""Upload image and get detected fashion items"""
if not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="Must be an image file")
try:
# Process image
contents = await file.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
# Run both models
clothing = detect_clothing_items(image)
accessories = detect_accessories(image)
return {
"success": True,
"total_items": len(clothing) + len(accessories),
"results": {
"clothing": clothing,
"accessories": accessories
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Fashion Detection API", "endpoint": "POST /detect"}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)