Spaces:
Sleeping
Sleeping
File size: 1,347 Bytes
a38b4f9 6693f3f ea8995e 6693f3f ea8995e a38b4f9 2854ab0 a38b4f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
# app/api/v1/metrics.py
from fastapi import APIRouter, HTTPException, Query, Depends, Request
from typing import List
from sklearn.metrics import accuracy_score
from nltk.translate.bleu_score import sentence_bleu
from sentence_transformers import SentenceTransformer, util
from app.auth.auth import verify_token
import os
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache"
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("clip-ViT-B-32")
# OR multilingual version
# model = SentenceTransformer("sentence-transformers/clip-ViT-B-32-multilingual-v1")32")
router = APIRouter()
@router.post("/evaluate/bleu", dependencies=[Depends(verify_token)])
def compute_bleu(reference: str, candidate: str):
print("Metrics router loaded!")
ref_tokens = [reference.split()]
cand_tokens = candidate.split()
score = sentence_bleu(ref_tokens, cand_tokens)
return {"metric": "BLEU", "score": score}
@router.post("/evaluate/clipscore")
def compute_clip_score(reference: str, candidate: str):
ref_emb = model.encode(reference, convert_to_tensor=True)
cand_emb = model.encode(candidate, convert_to_tensor=True)
score = util.cos_sim(ref_emb, cand_emb).item()
return {"metric": "CLIPScore", "score": score}
|