File size: 7,412 Bytes
44fec7d
 
09b91a9
 
e518b27
09b91a9
 
e518b27
 
 
 
44fec7d
e518b27
 
 
 
44fec7d
e518b27
09b91a9
 
e518b27
 
 
 
 
 
09b91a9
 
 
e518b27
09b91a9
e518b27
09b91a9
e518b27
 
 
 
 
 
 
 
 
9ae73d2
09b91a9
 
 
 
 
44fec7d
09b91a9
e518b27
 
 
3954b30
e518b27
 
 
 
 
2f0a1c2
e518b27
9ea88c8
e518b27
9ae73d2
e518b27
 
 
 
8e05eec
e518b27
9ea88c8
 
 
9ae73d2
9ea88c8
 
 
 
e518b27
 
09b91a9
 
 
 
 
 
c490b57
09b91a9
e518b27
 
 
 
 
 
 
 
44fec7d
e518b27
 
 
 
 
 
 
 
 
 
 
 
 
9ae73d2
e518b27
 
 
 
 
 
2f0a1c2
e518b27
 
 
 
 
 
 
 
 
9ae73d2
2f0a1c2
 
e518b27
09b91a9
2f0a1c2
 
09b91a9
e518b27
e63593c
 
09b91a9
 
 
e518b27
 
44fec7d
 
 
 
 
 
 
 
 
09b91a9
 
2f0a1c2
9ae73d2
2f0a1c2
7cfb22a
2f0a1c2
09b91a9
9ae73d2
2f0a1c2
9ae73d2
2f0a1c2
 
09b91a9
 
9ae73d2
 
 
 
e63593c
 
9ae73d2
 
 
2f0a1c2
 
9ae73d2
 
 
 
 
 
 
2f0a1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfb22a
9ae73d2
 
 
2f0a1c2
 
09b91a9
 
e518b27
09b91a9
 
939afee
09b91a9
 
 
 
 
 
 
 
 
2f0a1c2
9ae73d2
09b91a9
e518b27
09b91a9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import spaces # import first

import random

import numpy as np
import torch

from diffusers import StableDiffusionXLPipeline

import gradio as gr

from tkg import apply_tkg_noise, ColorSet, COLOR_SET_MAP

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

device = "cuda"
model_repo_id = "cagliostrolab/animagine-xl-4.0"  # Replace to the model you would like to use


pipe = StableDiffusionXLPipeline.from_pretrained(
    "cagliostrolab/animagine-xl-4.0",
    torch_dtype=torch.bfloat16,
    custom_pipeline="lpw_stable_diffusion_xl",
    add_watermarker=False,
)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU
def infer(
    prompt: str,
    negative_prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    tkg_channels: list[int] = [0, 1, 1, 0],
    chroma_key_shift: float = 0.11,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)

    latents = torch.randn(
        (
            1, 
            4, # 4 channels
            height // 8, 
            width // 8,
        ),
        generator=generator,
        device=device,
        dtype=torch.bfloat16,
    )
    tkg_latents = apply_tkg_noise(
        latents,
        shift=chroma_key_shift,
        delta_shift=0.1,
        std_dev=0.5,
        factor=8,
        channels=tkg_channels,
    ).to(torch.bfloat16)

    latents = torch.cat(
        [
            tkg_latents,
            latents,
        ],
        dim=0,
    )

    images = pipe(
        latents=latents,
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        num_images_per_prompt=2,
        generator=generator,
    ).images

    w_tkg, wo_tkg = images

    return w_tkg, wo_tkg, seed

def color_name_to_channels(color_name: str) -> list[int]:
    if color_name in COLOR_SET_MAP:
        return COLOR_SET_MAP[color_name].channels
    else:
        raise ValueError(f"Unknown color name: {color_name}")

def on_generate(
    prompt: str,
    negative_prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    color_name: str,
    chroma_key_shift: float,
    *args,
    **kwargs
):
    tkg_channels = color_name_to_channels(color_name)
    # TODO: custom channels

    w_tkg, wo_tkg, seed = infer(
        prompt,
        negative_prompt,
        seed,
        randomize_seed,
        width,
        height,
        guidance_scale,
        num_inference_steps,
        tkg_channels=tkg_channels,
        chroma_key_shift=chroma_key_shift,
        *args,
        **kwargs,
    )

    return w_tkg, wo_tkg, seed

examples = [
    # "1girl, arima kana, oshi no ko, hoshimachi suisei, hoshimachi suisei \(1st costume\), cosplay, looking at viewer, smile, outdoors, night, v, masterpiece, high score, great score, absurdres",
    "1girl, solo, school uniform, cat ears, full body, looking at viewer, straight-on, chibi, simple background, best quality",
    "1girl, solo, hand up, waving, long hair, sideways glance, upper body, cropped torso, simple background, best quality",
]


with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown(
            """
# TKG Chroma-Key with AnimagineXL 4.0

TKG-DMπŸ₯šπŸš: Training-free Chroma Key Content Generation Diffusion Model
- arXiv: https://arxiv.org/abs/2411.15580
- GitHub: https://github.com/ryugo417/TKG-DM

""")

        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label="Prompt",
                    max_lines=4,
                    placeholder="Enter your prompt",
                )
                
                color_set = gr.Dropdown(
                    label="Background color",
                    choices=list(COLOR_SET_MAP.keys()),
                    value="green",
                )

                with gr.Accordion("TKG Settings", open=False):
                    chroma_key_shift = gr.Slider(
                        label="Latent mean shift for chroma key",
                        minimum=0.0,
                        maximum=0.2,
                        step=0.005,
                        value=0.11,  
                    )


                with gr.Accordion("Advanced Settings", open=False):
                    negative_prompt = gr.Textbox(
                        label="Negative prompt",
                        max_lines=4,
                        placeholder="Enter a negative prompt",
                        value="lowres, bad anatomy, bad hands, text, error, missing finger, extra digits, fewer digits, cropped, worst quality, low quality, low score, bad score, average score, signature, watermark, username, blurry",
                    )

                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )

                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=832,  
                        )

                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1152,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=5.0,  
                        )

                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=25,  
                        )

            with gr.Column():
                run_button = gr.Button("Generate", variant="primary")
                with gr.Row():
                    result_w_tkg = gr.Image(label="with TKG")
                    result_wo_tkg = gr.Image(label="without TKG")

        

        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=on_generate,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            color_set,
            chroma_key_shift,
        ],
        outputs=[result_w_tkg, result_wo_tkg, seed],
    )

if __name__ == "__main__":
    demo.launch()