Spaces:
Runtime error
Runtime error
try: | |
import flash_attn | |
except: | |
import subprocess | |
print("Installing flash-attn...") | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True, | |
) | |
import flash_attn | |
print("flash-attn installed.") | |
import os | |
import time | |
import spaces | |
import torch | |
from transformers import ( | |
AutoModelForPreTraining, | |
AutoProcessor, | |
AutoConfig, | |
PreTrainedTokenizerFast, | |
) | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import gradio as gr | |
MODEL_NAME = os.environ.get("MODEL_NAME", None) | |
assert MODEL_NAME is not None | |
MODEL_PATH = hf_hub_download(repo_id=MODEL_NAME, filename="model.safetensors") | |
DEVICE = ( | |
torch.device("mps") if torch.backends.mps.is_available() else torch.device("cuda") | |
) | |
BAD_WORD_KEYWORDS = ["(medium)", " text", "(style)"] | |
def get_bad_words_ids(tokenizer: PreTrainedTokenizerFast): | |
ids = [ | |
[id] | |
for token, id in tokenizer.vocab.items() | |
if any(word in token for word in BAD_WORD_KEYWORDS) | |
] | |
return ids | |
def prepare_models(): | |
model = AutoModelForPreTraining.from_pretrained( | |
MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True | |
) | |
model.decoder_model.use_cache = True | |
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model.eval() | |
model = model.to(DEVICE) | |
# model = torch.compile(model) | |
return model, processor | |
def demo(): | |
model, processor = prepare_models() | |
ban_ids = get_bad_words_ids(processor.decoder_tokenizer) | |
translation_mode_map = { | |
"translate": "exact", | |
"translate + extend": "approx", | |
} | |
def generate_tags( | |
text: str, | |
auto_detect: bool, | |
mode: str = "translate", | |
copyright_tags: str = "", | |
length: str = "short", | |
max_new_tokens: int = 128, | |
do_sample: bool = False, | |
temperature: float = 0.1, | |
top_k: int = 10, | |
top_p: float = 0.1, | |
): | |
tag_text = ( | |
"<|bos|>" | |
f"<|aspect_ratio:tall|><|rating:general|><|length:{length}|>" | |
"<|reserved_2|><|reserved_3|><|reserved_4|>" | |
f"<|translate:{translation_mode_map[mode]}|><|input_end|>" | |
"<copyright>" + copyright_tags.strip() | |
) | |
if not auto_detect: | |
tag_text += "</copyright><character></character><general>" | |
inputs = processor( | |
encoder_text=text, decoder_text=tag_text, return_tensors="pt" | |
) | |
start_time = time.time() | |
outputs = model.generate( | |
input_ids=inputs["input_ids"].to(model.device), | |
attention_mask=inputs["attention_mask"].to(model.device), | |
encoder_input_ids=inputs["encoder_input_ids"].to(model.device), | |
encoder_attention_mask=inputs["encoder_attention_mask"].to(model.device), | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
no_repeat_ngram_size=1, | |
eos_token_id=processor.decoder_tokenizer.eos_token_id, | |
pad_token_id=processor.decoder_tokenizer.pad_token_id, | |
bad_words_ids=ban_ids, | |
) | |
elapsed = time.time() - start_time | |
deocded = ", ".join( | |
[ | |
tag | |
for tag in processor.batch_decode(outputs[0], skip_special_tokens=True) | |
if tag.strip() != "" | |
] | |
) | |
return [deocded, f"Time elapsed: {elapsed:.2f} seconds"] | |
# warmup | |
print("warming up...") | |
print(generate_tags("Hatsune Miku is looking at viewer.", True)) | |
print("done.") | |
with gr.Blocks() as ui: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Text( | |
label="Text", | |
info="Enter a prompt in natural language (currently only English is supported). But maybe danbooru tags are also supported.", | |
lines=4, | |
placeholder="A girl with fox ears and tail in maid costume is looking at viewer.", | |
) | |
auto_detect = gr.Checkbox( | |
label="Auto detect copyright tags.", value=False | |
) | |
copyright_tags = gr.Textbox( | |
label="Copyright tags", | |
info="You can specify copyright tags manually. This must be valid danbooru tags.", | |
placeholder="e.g.) vocaloid, blue archive", | |
) | |
length = gr.Dropdown( | |
label="Length", | |
choices=[ | |
"very_short", | |
"short", | |
"long", | |
"very_long", | |
], | |
value="short", | |
) | |
translation_mode = gr.Radio( | |
label="Translation mode", | |
choices=list(translation_mode_map.keys()), | |
value=list(translation_mode_map.keys())[0], | |
) | |
translate_btn = gr.Button(value="Translate", variant="primary") | |
with gr.Accordion(label="Advanced", open=False): | |
max_new_tokens = gr.Number(label="Max new tokens", value=128) | |
do_sample = gr.Checkbox(label="Do sample", value=False) | |
temperature = gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=1.0, | |
value=0.3, | |
step=0.1, | |
) | |
top_k = gr.Slider( | |
label="Top k", | |
minimum=1, | |
maximum=100, | |
value=10, | |
step=10, | |
) | |
top_p = gr.Slider( | |
label="Top p", | |
minimum=0.1, | |
maximum=1.0, | |
value=0.5, | |
step=0.1, | |
) | |
with gr.Column(): | |
output_translation = gr.Textbox(label="Output", lines=4, interactive=False) | |
# output_extension = gr.Textbox(label="Output (extension)", lines=4, interactive=False) | |
time_elapsed = gr.Markdown(value="") | |
gr.Examples( | |
examples=[ | |
[ | |
"猫耳で黒髪ロング、黄色い目で制服を着た少女がこっちを見てる。青背景で白い枠がついてる。ソファに座って足を組んでいる。", | |
False, | |
"", | |
"very_short", | |
"translate", | |
], | |
[ | |
"猫耳で黒髪ロング、黄色い目で制服を着た少女がこっちを見てる。青背景で白い枠がついてる。ソファに座って足を組んでいる。", | |
False, | |
"", | |
"long", | |
"translate + extend", | |
], | |
[ | |
"猫耳少女のポートレート。:3 ", | |
False, | |
"", | |
"very_short", | |
"translate + extend", | |
], | |
[ | |
"学園アイドルマスター。ジャージを着た篠澤広が疲れ切っており、床に座って笑いながらこっちを見ている", | |
True, | |
"", | |
"short", | |
"translate", | |
], | |
[ | |
"ガールズバンドクライの井芹ニナと桃華。シンプル背景。小指を立ててこっちを向いている。feet out of frame", | |
True, | |
"", | |
"long", | |
"translate + extend", | |
], | |
[ | |
"夜の暗い路地で、黒い服に身を包んだ女がこっちを振り返っている。白いシャツとネクタイ、ジャケットに、手袋をしている", | |
False, | |
"", | |
"long", | |
"translate + extend", | |
], | |
[ | |
"一人の少女の横顔で、全体的に赤い雰囲気。髪は肩までの長さで、横を向いている。", | |
False, | |
"", | |
"short", | |
"translate + extend", | |
], | |
[ | |
"二人の少女がいる。一人は、blonde hair で long hair、もう一人は brown hair で short hair。二人とも制服。少なくとも片方はブレザーを着ている。場所は教室で、窓から日差しが差し込んでいる。cowboy shot。一人は机に座っていて、もう一人は立っている。", | |
False, | |
"", | |
"long", | |
"translate + extend", | |
], | |
], | |
inputs=[text, auto_detect, copyright_tags, length, translation_mode], | |
) | |
gr.on( | |
triggers=[ | |
translate_btn.click, | |
], | |
fn=generate_tags, | |
inputs=[ | |
text, | |
auto_detect, | |
translation_mode, | |
copyright_tags, | |
length, | |
max_new_tokens, | |
do_sample, | |
temperature, | |
top_k, | |
top_p, | |
], | |
outputs=[ | |
output_translation, | |
# output_extension, | |
time_elapsed, | |
], | |
) | |
ui.launch() | |
if __name__ == "__main__": | |
demo() | |