File size: 10,043 Bytes
a33458e
 
48a1a2b
 
 
28ff371
a33458e
2a735cc
a33458e
 
28ff371
 
 
a33458e
 
 
48a1a2b
 
 
 
a33458e
 
 
 
 
 
 
 
 
 
 
 
 
 
48a1a2b
a33458e
 
 
 
 
 
 
 
 
 
48a1a2b
 
28ff371
 
 
 
 
 
 
 
 
a33458e
28ff371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
48a1a2b
 
28ff371
48a1a2b
 
 
 
28ff371
48a1a2b
 
 
 
28ff371
 
 
 
 
48a1a2b
 
 
28ff371
 
 
 
 
 
48a1a2b
a33458e
 
48a1a2b
 
 
 
 
 
 
 
 
 
 
28ff371
 
48a1a2b
 
 
 
 
 
 
 
 
 
 
 
28ff371
48a1a2b
 
 
 
 
28ff371
 
 
 
 
 
48a1a2b
 
 
28ff371
 
 
 
 
 
 
48a1a2b
 
 
 
28ff371
48a1a2b
28ff371
a33458e
 
 
48a1a2b
28ff371
 
 
 
48a1a2b
 
 
 
 
 
 
28ff371
 
 
 
48a1a2b
 
 
 
 
28ff371
48a1a2b
28ff371
48a1a2b
 
 
 
 
 
28ff371
 
 
 
 
 
 
 
48a1a2b
 
 
28ff371
48a1a2b
28ff371
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import sys
import logging
import time
import random
import traceback
from typing import List, Dict, Any
from langchain_community.document_loaders import (
    PyPDFLoader,
    TextLoader,
    CSVLoader,
    UnstructuredFileLoader,
    Docx2txtLoader
)
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Add project root to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from app.config import CHUNK_SIZE, CHUNK_OVERLAP
from app.core.memory import MemoryManager

class DocumentProcessor:
    """Processes documents for ingestion into the vector database."""
    
    def __init__(self, memory_manager: MemoryManager):
        self.memory_manager = memory_manager
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=CHUNK_SIZE,
            chunk_overlap=CHUNK_OVERLAP
        )
        logger.info(f"DocumentProcessor initialized with chunk size {CHUNK_SIZE}, overlap {CHUNK_OVERLAP}")
    
    def process_file(self, file_path: str) -> List[str]:
        """Process a file and return a list of document chunks."""
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"File not found: {file_path}")
        
        # Get the file extension
        _, extension = os.path.splitext(file_path)
        extension = extension.lower()
        
        logger.info(f"Processing file: {file_path} with extension {extension}")
        
        # Verify file is readable
        try:
            with open(file_path, 'rb') as f:
                # Just check if we can read from it
                f.read(1)
        except Exception as e:
            logger.error(f"Cannot read file {file_path}: {e}")
            raise IOError(f"File {file_path} exists but cannot be read: {str(e)}")
            
        # Load the file using the appropriate loader
        try:
            if extension == '.pdf':
                loader = PyPDFLoader(file_path)
            elif extension == '.txt':
                loader = TextLoader(file_path)
            elif extension == '.csv':
                loader = CSVLoader(file_path)
            elif extension in ['.doc', '.docx']:
                loader = Docx2txtLoader(file_path)
            elif extension in ['.md', '.html', '.htm', '.xml', '.json']:
                # Dedicated loaders could be added for these formats
                loader = TextLoader(file_path)
            else:
                # Try generic loader as fallback for unsupported types
                logger.warning(f"No specific loader for {extension}, trying UnstructuredFileLoader")
                loader = UnstructuredFileLoader(file_path)
                
            # Load and split the documents
            documents = loader.load()
            
            if not documents:
                logger.warning(f"No content extracted from {file_path}")
                # Create a minimal document if empty to avoid errors
                from langchain.schema import Document
                documents = [Document(page_content=f"Empty file: {os.path.basename(file_path)}", 
                                    metadata={"source": file_path})]
                
            chunks = self.text_splitter.split_documents(documents)
            
            logger.info(f"Split file into {len(chunks)} chunks")
            return chunks
            
        except Exception as e:
            logger.error(f"Error in document processing: {str(e)}")
            logger.error(traceback.format_exc())
            
            # Create a minimal document to represent the error
            from langchain.schema import Document
            error_doc = Document(
                page_content=f"Error processing file {os.path.basename(file_path)}: {str(e)}",
                metadata={"source": file_path, "error": str(e)}
            )
            return [error_doc]
    
    def _retry_operation(self, operation, max_retries=3):
        """Retry an operation with exponential backoff."""
        last_exception = None
        for attempt in range(max_retries):
            try:
                return operation()
            except Exception as e:
                last_exception = e
                if "already accessed by another instance" in str(e) and attempt < max_retries - 1:
                    wait_time = random.uniform(0.5, 2.0) * (attempt + 1)
                    logger.warning(f"Vector store access conflict, retrying ({attempt+1}/{max_retries}) in {wait_time:.2f}s...")
                    time.sleep(wait_time)
                elif attempt < max_retries - 1:
                    # For other errors, also retry but with different message
                    wait_time = random.uniform(0.5, 2.0) * (attempt + 1)
                    logger.warning(f"Operation failed ({str(e)}), retrying ({attempt+1}/{max_retries}) in {wait_time:.2f}s...")
                    time.sleep(wait_time)
                else:
                    # Different error or last attempt, re-raise
                    raise
        
        # If we get here with a last_exception, re-raise it
        if last_exception:
            raise last_exception
        else:
            raise RuntimeError("Retry operation failed but no exception was captured")
    
    def ingest_file(self, file_path: str, metadata: Dict[str, Any] = None) -> List[str]:
        """Ingest a file into the vector database."""
        try:
            # Process the file
            chunks = self.process_file(file_path)
            
            # Add metadata to each chunk
            if metadata is None:
                metadata = {}
            
            # Add file path to metadata
            base_metadata = {
                "source": file_path,
                "file_name": os.path.basename(file_path),
                "ingestion_time": time.strftime("%Y-%m-%d %H:%M:%S")
            }
            base_metadata.update(metadata)
            
            # Prepare chunks and metadatas
            texts = [chunk.page_content for chunk in chunks]
            metadatas = []
            
            for i, chunk in enumerate(chunks):
                chunk_metadata = base_metadata.copy()
                if hasattr(chunk, 'metadata'):
                    chunk_metadata.update(chunk.metadata)
                chunk_metadata["chunk_id"] = i
                chunk_metadata["total_chunks"] = len(chunks)
                metadatas.append(chunk_metadata)
            
            # Store in vector database with retry mechanism
            logger.info(f"Adding {len(texts)} chunks to vector database")
            
            # Handle empty texts to avoid errors
            if not texts:
                logger.warning("No text chunks extracted from file, adding placeholder")
                texts = [f"Empty file: {os.path.basename(file_path)}"]
                metadatas = [{"source": file_path, "file_name": os.path.basename(file_path), "empty_file": True}]
            
            def add_to_vectordb():
                return self.memory_manager.add_texts(texts, metadatas)
                
            try:
                ids = self._retry_operation(add_to_vectordb)
                logger.info(f"Successfully added chunks with IDs: {ids[:3] if len(ids) > 3 else ids}...")
            except Exception as e:
                logger.error(f"All attempts to add to vector DB failed: {e}")
                # Return placeholder IDs
                ids = [f"error-{random.randint(1000, 9999)}" for _ in range(len(texts))]
            
            return ids
        except Exception as e:
            logger.error(f"Error ingesting file {file_path}: {str(e)}")
            logger.error(traceback.format_exc())
            # Return placeholder IDs if there's an error
            return [f"error-{random.randint(1000, 9999)}"]
    
    def ingest_text(self, text: str, metadata: Dict[str, Any] = None) -> List[str]:
        """Ingest raw text into the vector database."""
        try:
            if not text.strip():
                logger.warning("Empty text provided for ingestion")
                return ["empty-text-error"]
                
            if metadata is None:
                metadata = {}
            
            # Split the text
            chunks = self.text_splitter.split_text(text)
            logger.info(f"Split text into {len(chunks)} chunks")
            
            # If text splitting produced no chunks (unusual), create one
            if not chunks:
                chunks = ["Empty text input"]
                
            # Prepare metadatas
            metadatas = []
            for i in range(len(chunks)):
                chunk_metadata = metadata.copy()
                chunk_metadata["chunk_id"] = i
                chunk_metadata["total_chunks"] = len(chunks)
                chunk_metadata["source"] = "direct_input"
                chunk_metadata["ingestion_time"] = time.strftime("%Y-%m-%d %H:%M:%S")
                metadatas.append(chunk_metadata)
            
            # Store in vector database with retry mechanism
            def add_to_vectordb():
                return self.memory_manager.add_texts(chunks, metadatas)
                
            try:
                ids = self._retry_operation(add_to_vectordb)
                logger.info(f"Successfully added text chunks with IDs: {ids[:3] if len(ids) > 3 else ids}...")
            except Exception as e:
                logger.error(f"All attempts to add text to vector DB failed: {e}")
                # Return placeholder IDs
                ids = [f"error-{random.randint(1000, 9999)}" for _ in range(len(chunks))]
                
            return ids
        except Exception as e:
            logger.error(f"Error ingesting text: {str(e)}")
            logger.error(traceback.format_exc())
            # Return placeholder IDs if there's an error
            return [f"error-{random.randint(1000, 9999)}"]