File size: 12,090 Bytes
a33458e
 
9f0d171
 
 
2a735cc
a33458e
 
 
 
f8ed285
 
a33458e
9f0d171
 
 
 
a33458e
 
 
 
 
f8ed285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0d171
 
a33458e
9f0d171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
 
 
9f0d171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
9f0d171
 
 
 
 
 
 
 
 
 
 
a33458e
 
 
 
 
 
 
 
 
 
 
6c6cf17
f8ed285
 
b725ad2
f8ed285
 
b725ad2
f8ed285
 
 
 
 
 
 
 
 
 
 
b725ad2
f8ed285
28ff371
 
 
 
 
 
f8ed285
 
 
 
 
28ff371
 
 
 
 
 
 
 
 
 
 
f8ed285
 
 
 
 
 
 
 
 
28ff371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ed285
 
 
 
b725ad2
 
f8ed285
b725ad2
28ff371
b725ad2
 
 
f8ed285
6c6cf17
 
 
 
 
 
 
 
 
 
 
b725ad2
6c6cf17
 
 
a33458e
 
 
9f0d171
 
 
 
 
a33458e
 
 
9f0d171
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import sys
import time
import random
import logging
from langchain_community.vectorstores import Qdrant
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams
from langchain.chains.base import Chain
from typing import Dict, List, Any

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Add project root to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from app.config import VECTOR_DB_PATH, COLLECTION_NAME
from app.core.llm import get_llm, get_embeddings, get_chat_model

class CustomRAGChain:
    """Custom RAG chain that always returns standardized output format."""
    
    def __init__(self, base_chain):
        self.base_chain = base_chain
        logger.info("CustomRAGChain initialized")
    
    def __call__(self, inputs):
        """Process inputs and return standardized output."""
        try:
            logger.info("CustomRAGChain processing query")
            # Execute the underlying chain
            result = self.base_chain(inputs)
            logger.info(f"Base chain returned keys: {list(result.keys())}")
            
            # Create standardized output
            standardized = {
                "answer": result.get("answer", "I couldn't generate an answer."),
                "sources": result.get("source_documents", [])
            }
            return standardized
        except Exception as e:
            logger.error(f"Error in CustomRAGChain: {e}")
            return {
                "answer": f"Error processing query: {str(e)}",
                "sources": []
            }

class MemoryManager:
    """Manages the RAG memory system using a vector database."""
    
    def __init__(self):
        self.embeddings = get_embeddings()
        self.llm = get_llm()
        self.chat_model = get_chat_model()
        self.client = self._init_qdrant_client()
        self.vectorstore = self._init_vector_store()
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True
        )
        
    def _init_qdrant_client(self):
        """Initialize the Qdrant client with retry logic for concurrent access issues."""
        # Create directory if it doesn't exist
        os.makedirs(VECTOR_DB_PATH, exist_ok=True)
        
        # Add a small random delay to reduce chance of concurrent access
        time.sleep(random.uniform(0.1, 0.5))
        
        # Generate a unique path for this instance to avoid collision
        instance_id = str(random.randint(10000, 99999))
        unique_path = os.path.join(VECTOR_DB_PATH, f"instance_{instance_id}")
        
        max_retries = 3
        retry_count = 0
        
        while retry_count < max_retries:
            try:
                logger.info(f"Attempting to initialize Qdrant client (attempt {retry_count+1}/{max_retries})")
                # Try to use the unique path first
                try:
                    os.makedirs(unique_path, exist_ok=True)
                    return QdrantClient(path=unique_path)
                except Exception as e:
                    logger.warning(f"Could not use unique path {unique_path}: {e}")
                    
                    # Try the main path as fallback
                    return QdrantClient(path=VECTOR_DB_PATH)
                    
            except RuntimeError as e:
                if "already accessed by another instance" in str(e):
                    retry_count += 1
                    wait_time = random.uniform(0.5, 2.0) * retry_count
                    logger.warning(f"Qdrant concurrent access detected. Retrying in {wait_time:.2f} seconds...")
                    time.sleep(wait_time)
                else:
                    # Different error, don't retry
                    raise
                    
        # If all retries failed, try to use in-memory storage as last resort
        logger.warning("All Qdrant client initialization attempts failed. Using in-memory mode.")
        return QdrantClient(":memory:")
    
    def _init_vector_store(self):
        """Initialize the vector store."""
        try:
            collections = self.client.get_collections().collections
            collection_names = [collection.name for collection in collections]
            
            # Get vector dimension from the embedding model
            vector_size = len(self.embeddings.embed_query("test"))
            
            if COLLECTION_NAME not in collection_names:
                # Create the collection with appropriate settings
                self.client.create_collection(
                    collection_name=COLLECTION_NAME,
                    vectors_config=VectorParams(size=vector_size, distance=Distance.COSINE),
                )
                logger.info(f"Created new collection: {COLLECTION_NAME}")
                
            return Qdrant(
                client=self.client, 
                collection_name=COLLECTION_NAME,
                embeddings=self.embeddings
            )
        except Exception as e:
            logger.error(f"Error initializing vector store: {e}")
            # Create a simple in-memory fallback
            logger.warning("Using in-memory vector store as fallback.")
            return Qdrant.from_texts(
                ["Hello, I am your AI assistant."], 
                self.embeddings, 
                location=":memory:", 
                collection_name=COLLECTION_NAME
            )
    
    def get_retriever(self):
        """Get the retriever for RAG."""
        return self.vectorstore.as_retriever(
            search_type="similarity",
            search_kwargs={"k": 5}
        )
    
    def create_rag_chain(self):
        """Create a RAG chain for question answering."""
        try:
            # Create the base conversational retrieval chain
            logger.info("Creating base ConversationalRetrievalChain")
            
            # Different approach: create a simple function instead
            def simple_chain(query_dict):
                try:
                    # Extract the question
                    question = query_dict.get("question", "")
                    if not question.strip():
                        return {
                            "answer": "No question provided.",
                            "sources": []
                        }
                    
                    # Get relevant documents from the retriever
                    retriever = self.get_retriever()
                    relevant_docs = retriever.get_relevant_documents(question)
                    
                    # Format the context from relevant documents
                    context_parts = []
                    for i, doc in enumerate(relevant_docs):
                        source_name = doc.metadata.get("file_name", "Unknown Source")
                        context_parts.append(f"Document {i+1} [{source_name}]:\n{doc.page_content}\n")
                    
                    context = "\n".join(context_parts) if context_parts else "No relevant documents found."
                    
                    # Get chat history from memory
                    chat_history = self.memory.chat_memory.messages
                    chat_history_str = "\n".join([f"{msg.type}: {msg.content}" for msg in chat_history])
                    
                    # Create the improved prompt with better instructions
                    prompt = f"""You are a helpful, accurate, and precise AI assistant. Answer the following question based on the provided context.

Follow these guidelines when responding:
1. If the context contains relevant information, use it to provide a direct and specific answer.
2. Format your answer in clear, concise paragraphs with appropriate spacing.
3. If the answer is not in the context, acknowledge this and provide a general response based on your knowledge.
4. Do not mention "context" or "documents" in your answer - integrate the information naturally.
5. Keep answers factual, helpful, and to the point.
6. Never make up information that isn't supported by the context.

Context:
{context}

Chat History:
{chat_history_str}

Question: {question}
Answer:"""
                    
                    # Get the answer from the LLM with a timeout and retries
                    try:
                        answer = self.llm(prompt)
                        
                        # Simple quality check - if too short or generic, try again
                        if len(answer.strip()) < 20 or "I don't have enough information" in answer:
                            logger.info("Answer quality check failed, retrying with modified prompt")
                            
                            # Add a more specific instruction to the prompt
                            enhanced_prompt = prompt + "\n\nPlease be as helpful as possible with the information available."
                            second_attempt = self.llm(enhanced_prompt)
                            
                            # Use the better of the two responses
                            if len(second_attempt.strip()) > len(answer.strip()):
                                answer = second_attempt
                    except Exception as llm_error:
                        logger.error(f"Error getting answer from LLM: {llm_error}")
                        if not answer:  # If answer wasn't set due to first attempt exception
                            answer = f"I'm having trouble generating a response right now. Please try again in a moment."
                    
                    # Perform basic formatting cleanup
                    answer = answer.strip()
                    
                    # Remove common prefixes that models sometimes add
                    prefixes_to_remove = ["Answer:", "AI:", "Assistant:"]
                    for prefix in prefixes_to_remove:
                        if answer.startswith(prefix):
                            answer = answer[len(prefix):].strip()
                    
                    return {
                        "answer": answer,
                        "sources": relevant_docs
                    }
                except Exception as e:
                    logger.error(f"Error in simple_chain: {e}")
                    return {
                        "answer": f"I encountered an error while processing your question. Please try again with a different query.",
                        "sources": []
                    }
            
            return simple_chain
        except Exception as e:
            logger.error(f"Error creating RAG chain: {e}")
            
            # Create a mock chain as fallback
            logger.warning("Using fallback mock chain")
            
            # Create a simple function that mimics the chain's interface
            def mock_chain(inputs):
                logger.info(f"Mock chain received query: {inputs.get('question', '')}")
                return {
                    "answer": "I'm having trouble accessing the knowledge base. I can only answer general questions right now.",
                    "sources": []
                }
            
            return mock_chain
    
    def add_texts(self, texts, metadatas=None):
        """Add texts to the vector store."""
        try:
            return self.vectorstore.add_texts(texts=texts, metadatas=metadatas)
        except Exception as e:
            logger.error(f"Error adding texts to vector store: {e}")
            return ["error-id-" + str(random.randint(10000, 99999))]
    
    def similarity_search(self, query, k=5):
        """Perform a similarity search."""
        try:
            return self.vectorstore.similarity_search(query, k=k)
        except Exception as e:
            logger.error(f"Error during similarity search: {e}")
            return []