File size: 27,436 Bytes
a33458e
 
 
 
 
2a735cc
a33458e
9f0d171
 
 
 
 
 
a33458e
 
 
c7d6600
 
 
 
 
2a735cc
 
6c6cf17
2a735cc
 
 
 
 
c7d6600
 
 
 
 
2a735cc
 
6c6cf17
2a735cc
 
 
 
 
a33458e
 
 
2a735cc
 
a33458e
 
 
9f0d171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a1a2b
 
 
 
9f0d171
 
48a1a2b
9f0d171
 
 
 
 
 
 
 
 
 
 
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
 
 
2a735cc
 
 
 
 
 
a33458e
2a735cc
9f0d171
 
2a735cc
 
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ff371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
6c6cf17
28ff371
 
 
 
 
 
 
 
 
6c6cf17
 
 
28ff371
 
 
6c6cf17
 
28ff371
6c6cf17
 
 
 
 
 
 
 
 
 
28ff371
6c6cf17
 
 
 
 
 
 
 
 
28ff371
6c6cf17
f8ed285
28ff371
 
f8ed285
 
 
 
28ff371
 
 
f8ed285
 
 
 
28ff371
f8ed285
 
28ff371
 
 
 
 
f8ed285
28ff371
6c6cf17
 
 
 
 
 
 
 
 
28ff371
 
 
 
 
 
 
6c6cf17
28ff371
6c6cf17
28ff371
f8ed285
 
 
28ff371
2a735cc
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
 
a33458e
2a735cc
 
 
28ff371
2a735cc
 
28ff371
2a735cc
a33458e
2a735cc
 
 
 
 
 
 
a33458e
2a735cc
a33458e
2a735cc
 
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
2a735cc
 
 
 
a33458e
2a735cc
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c6cf17
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
6c6cf17
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0d171
2a735cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33458e
2a735cc
 
 
 
 
 
 
 
 
 
a33458e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
import streamlit as st
import os
import sys
import tempfile
from datetime import datetime
import pandas as pd
from typing import List, Dict, Any
import time
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Add project root to path for imports
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))

# Use relative imports when running as part of the app package
try:
    from app.core.agent import AssistantAgent
    from app.core.ingestion import DocumentProcessor
    from app.core.telegram_bot import TelegramBot
    from app.core.chat_history import ChatHistoryManager
    from app.utils.helpers import get_document_path, format_sources, save_conversation, copy_uploaded_file
    from app.config import (
        LLM_MODEL, EMBEDDING_MODEL, TELEGRAM_ENABLED, 
        TELEGRAM_BOT_TOKEN, TELEGRAM_ALLOWED_USERS,
        HF_DATASET_NAME
    )
except ImportError:
    # Fallback to direct imports if app is not recognized as a package
    sys.path.append(os.path.abspath('.'))
    from app.core.agent import AssistantAgent
    from app.core.ingestion import DocumentProcessor
    from app.core.telegram_bot import TelegramBot
    from app.core.chat_history import ChatHistoryManager
    from app.utils.helpers import get_document_path, format_sources, save_conversation, copy_uploaded_file
    from app.config import (
        LLM_MODEL, EMBEDDING_MODEL, TELEGRAM_ENABLED, 
        TELEGRAM_BOT_TOKEN, TELEGRAM_ALLOWED_USERS,
        HF_DATASET_NAME
    )

# Set page config
st.set_page_config(
    page_title="Personal AI Second Brain",
    page_icon="🧠",
    layout="wide"
)

# Function to initialize the agent safely
@st.cache_resource
def get_agent():
    logger.info("Initializing AssistantAgent (should only happen once)")
    try:
        return AssistantAgent()
    except Exception as e:
        logger.error(f"Error initializing agent: {e}")
        st.error(f"Could not initialize AI assistant: {str(e)}")
        # Return a dummy agent as fallback
        class DummyAgent:
            def query(self, question):
                return {
                    "answer": "I'm having trouble starting up. Please try refreshing the page.",
                    "sources": []
                }
            def add_conversation_to_memory(self, *args, **kwargs):
                pass
        return DummyAgent()

# Function to initialize document processor safely
@st.cache_resource
def get_document_processor(_agent):
    """Initialize document processor with unhashable agent parameter.
    The leading underscore in _agent tells Streamlit not to hash this parameter.
    """
    logger.info("Initializing DocumentProcessor (should only happen once)")
    try:
        return DocumentProcessor(_agent.memory_manager)
    except Exception as e:
        logger.error(f"Error initializing document processor: {e}")
        st.error(f"Could not initialize document processor: {str(e)}")
        # Return a dummy processor as fallback
        class DummyProcessor:
            def ingest_file(self, *args, **kwargs):
                return ["dummy-id"]
            def ingest_text(self, *args, **kwargs):
                return ["dummy-id"]
        return DummyProcessor()

# Function to initialize chat history manager
@st.cache_resource
def get_chat_history_manager():
    logger.info("Initializing ChatHistoryManager")
    try:
        return ChatHistoryManager(dataset_name=HF_DATASET_NAME)
    except Exception as e:
        logger.error(f"Error initializing chat history manager: {e}")
        st.error(f"Could not initialize chat history: {str(e)}")
        # Return a dummy manager as fallback
        class DummyHistoryManager:
            def load_history(self, *args, **kwargs):
                return []
            def save_conversation(self, *args, **kwargs):
                return True
            def sync_to_hub(self, *args, **kwargs):
                return False
        return DummyHistoryManager()

# Function to initialize Telegram bot
@st.cache_resource
def get_telegram_bot(_agent):
    """Initialize Telegram bot with unhashable agent parameter."""
    if not TELEGRAM_ENABLED or not TELEGRAM_BOT_TOKEN:
        logger.info("Telegram bot disabled or token missing")
        return None
        
    logger.info("Initializing Telegram bot")
    try:
        bot = TelegramBot(
            agent=_agent,
            token=TELEGRAM_BOT_TOKEN,
            allowed_user_ids=TELEGRAM_ALLOWED_USERS
        )
        return bot
    except Exception as e:
        logger.error(f"Error initializing Telegram bot: {e}")
        return None

# Initialize session state variables
if "messages" not in st.session_state:
    st.session_state.messages = []
if "telegram_status" not in st.session_state:
    st.session_state.telegram_status = "Not started"
if "history_filter" not in st.session_state:
    st.session_state.history_filter = ""
if "current_tab" not in st.session_state:
    st.session_state.current_tab = "Chat"

# Initialize agent and other components with caching
agent = get_agent()
document_processor = get_document_processor(agent)
chat_history_manager = get_chat_history_manager()
telegram_bot = get_telegram_bot(agent)

# Load initial messages from history
if not st.session_state.messages:
    try:
        recent_history = chat_history_manager.load_history()
        # Take the last 10 conversations and convert to messages format
        for conv in recent_history[-10:]:
            if "user_query" in conv and "assistant_response" in conv:
                st.session_state.messages.append({"role": "user", "content": conv["user_query"]})
                st.session_state.messages.append({"role": "assistant", "content": conv["assistant_response"]})
    except Exception as e:
        logger.error(f"Error loading initial history: {e}")

# Main UI
st.title("🧠 Personal AI Second Brain")

# Create tabs for different functionality
tabs = st.tabs(["Chat", "Documents", "History", "Settings"])

# Chat tab
with tabs[0]:
    if st.session_state.current_tab != "Chat":
        st.session_state.current_tab = "Chat"
        
    # Display chat messages from history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])
    
    # Accept user input
    if prompt := st.chat_input("Ask me anything..."):
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})
        
        # Display user message in chat
        with st.chat_message("user"):
            st.markdown(prompt)
        
        # Generate and display assistant response
        with st.chat_message("assistant"):
            message_placeholder = st.empty()
            message_placeholder.markdown("Thinking...")
            
            try:
                response = agent.query(prompt)
                answer = response["answer"]
                sources = response["sources"]
                
                # Update the placeholder with the response
                message_placeholder.markdown(answer)
                
                # Add assistant response to chat history
                st.session_state.messages.append({"role": "assistant", "content": answer})
                
                # Save conversation to history manager
                chat_history_manager.save_conversation({
                    "user_query": prompt,
                    "assistant_response": answer,
                    "sources": [s["source"] for s in sources] if sources else [],
                    "timestamp": datetime.now().isoformat()
                })
                
                # Display sources if available
                if sources:
                    with st.expander("Sources"):
                        st.markdown(format_sources(sources))
                
                # Add to agent's memory
                agent.add_conversation_to_memory(prompt, answer)
                
            except Exception as e:
                logger.error(f"Error generating response: {e}")
                error_message = f"I'm sorry, I encountered an error: {str(e)}"
                message_placeholder.markdown(error_message)
                st.session_state.messages.append({"role": "assistant", "content": error_message})

# Documents tab (existing functionality)
with tabs[1]:
    if st.session_state.current_tab != "Documents":
        st.session_state.current_tab = "Documents"
    
    st.header("Upload & Manage Documents")
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.subheader("Upload a File")
        
        # Show supported file types info
        with st.expander("Supported File Types"):
            st.markdown("""
            - **PDF** (.pdf) - Best for formatted documents
            - **Text** (.txt) - Simple text files
            - **CSV** (.csv) - Structured data
            - **Word** (.doc, .docx) - Microsoft Word documents
            - **Markdown** (.md) - Formatted text
            - **HTML** (.html, .htm) - Web pages
            
            Other file types may work but are not fully supported.
            """)
            
        uploaded_file = st.file_uploader("Choose a file", type=["pdf", "txt", "csv", "doc", "docx", "md", "html", "htm", "xml", "json"])
        
        if uploaded_file is not None:
            # Display file info
            file_details = {
                "Filename": uploaded_file.name,
                "File size": f"{uploaded_file.size / 1024:.1f} KB",
                "File type": uploaded_file.type
            }
            
            st.json(file_details)
            
            # Handle the uploaded file
            if st.button("Process Document"):
                with st.spinner("Processing document..."):
                    status_placeholder = st.empty()
                    status_placeholder.info("Starting document processing...")
                    
                    try:
                        # Create a temporary file with proper error handling
                        status_placeholder.info("Creating temporary file...")
                        temp_dir = tempfile.gettempdir()
                        temp_path = os.path.join(temp_dir, uploaded_file.name)
                        
                        logger.info(f"Saving uploaded file to temporary path: {temp_path}")
                        
                        # Write the file data to the temporary file
                        with open(temp_path, "wb") as temp_file:
                            temp_file.write(uploaded_file.getvalue())
                        
                        # Get a path to store the document permanently
                        status_placeholder.info("Preparing document storage location...")
                        doc_path = get_document_path(uploaded_file.name)
                        
                        # Copy the file to the documents directory
                        logger.info(f"Copying file to documents directory: {doc_path}")
                        copy_success = copy_uploaded_file(temp_path, doc_path)
                        
                        if not copy_success:
                            logger.warning("Using temporary file path instead of documents directory")
                            doc_path = temp_path
                            status_placeholder.warning("Using temporary storage (document won't be permanently saved)")
                        
                        # Ingest the document with retry logic for 403 errors
                        status_placeholder.info("Analyzing and indexing document content...")
                        progress_bar = st.progress(0)
                        max_retries = 3
                        
                        for attempt in range(max_retries):
                            try:
                                progress_bar.progress((attempt * 30) / 100)  # Show progress as we attempt
                                ids = document_processor.ingest_file(temp_path, {"original_name": uploaded_file.name})
                                progress_bar.progress(100)
                                break
                            except Exception as e:
                                error_str = str(e).lower()
                                if ("403" in error_str or "forbidden" in error_str or "permission" in error_str) and attempt < max_retries - 1:
                                    status_placeholder.warning(f"Permission error ({attempt+1}/{max_retries}), retrying...")
                                    logger.warning(f"Permission error ({attempt+1}/{max_retries}), retrying...")
                                    time.sleep(1.5)  # Add delay between retries
                                elif attempt < max_retries - 1:
                                    # General retry for any error
                                    status_placeholder.warning(f"Error ({attempt+1}/{max_retries}), retrying...")
                                    logger.warning(f"Error during ingestion ({attempt+1}/{max_retries}): {e}")
                                    time.sleep(1.5)
                                else:
                                    raise  # Re-raise on last attempt
                        
                        # Clean up the temporary file if different from doc_path
                        if temp_path != doc_path and os.path.exists(temp_path):
                            try:
                                os.unlink(temp_path)
                                logger.info(f"Temporary file removed: {temp_path}")
                            except Exception as e:
                                logger.warning(f"Could not remove temporary file: {e}")
                        
                        # Check if ingestion was successful based on IDs
                        if ids and not all(str(id).startswith("error-") for id in ids):
                            status_placeholder.success(f"✅ Document processed successfully!")
                            st.balloons()  # Celebrate success
                        else:
                            status_placeholder.warning("⚠️ Document processed with warnings. Some content may not be fully indexed.")
                            
                    except Exception as e:
                        progress_bar = st.progress(100) if 'progress_bar' in locals() else st.progress(0)
                        logger.error(f"Error processing document: {str(e)}")
                        status_placeholder.error(f"❌ Error processing document: {str(e)}")
                        
                        if "403" in str(e) or "forbidden" in str(e).lower():
                            st.warning("This appears to be a permissions issue. Try using a different file format or using the text input option instead.")
                        elif "unsupported" in str(e).lower() or "not supported" in str(e).lower() or "no specific loader" in str(e).lower():
                            st.warning("This file format may not be supported. Try converting to PDF or TXT first.")
    
    with col2:
        st.subheader("Add Text Directly")
        
        # Text input for adding content directly
        text_content = st.text_area("Enter text to add to your knowledge base:", height=200)
        text_title = st.text_input("Give this text a title:")
        
        if st.button("Process Text") and text_content and text_title:
            with st.spinner("Processing text..."):
                status_placeholder = st.empty()
                status_placeholder.info("Processing your text...")
                
                try:
                    # Process the text content
                    metadata = {"title": text_title, "source": "direct_input"}
                    ids = document_processor.ingest_text(text_content, metadata)
                    
                    if ids:
                        status_placeholder.success("✅ Text processed successfully!")
                    else:
                        status_placeholder.warning("⚠️ Text processed with warnings.")
                except Exception as e:
                    logger.error(f"Error processing text: {str(e)}")
                    status_placeholder.error(f"❌ Error processing text: {str(e)}")

# History tab (new)
with tabs[2]:
    if st.session_state.current_tab != "History":
        st.session_state.current_tab = "History"
    
    st.header("Chat History")
    
    # Search and filtering options
    col1, col2, col3 = st.columns([2, 1, 1])
    
    with col1:
        search_query = st.text_input("Search conversations:", st.session_state.history_filter)
        if search_query != st.session_state.history_filter:
            st.session_state.history_filter = search_query
    
    with col2:
        st.text("Date Range (optional)")
        start_date = st.date_input("Start date", None)
    
    with col3:
        st.text("\u00A0")  # Non-breaking space for alignment
        end_date = st.date_input("End date", None)
    
    # Load and filter history
    try:
        history = chat_history_manager.load_history()
        
        # Apply search filter if provided
        if search_query:
            history = chat_history_manager.search_conversations(search_query)
        
        # Apply date filtering if provided
        if start_date or end_date:
            # Convert datetime.date to datetime.datetime for filtering
            start_datetime = datetime.combine(start_date, datetime.min.time()) if start_date else None
            end_datetime = datetime.combine(end_date, datetime.max.time()) if end_date else None
            history = chat_history_manager.get_conversations_by_date(start_datetime, end_datetime)
        
        # Display history
        if not history:
            st.info("No conversation history found matching your criteria.")
        else:
            # Sort by timestamp (newest first)
            history.sort(key=lambda x: x.get("timestamp", ""), reverse=True)
            
            # Create a DataFrame for display
            df = pd.DataFrame(history)
            if not df.empty:
                # Select and rename columns for display
                if all(col in df.columns for col in ["timestamp", "user_query", "assistant_response"]):
                    display_df = df[["timestamp", "user_query", "assistant_response"]]
                    display_df = display_df.rename(columns={
                        "timestamp": "Date",
                        "user_query": "Your Question",
                        "assistant_response": "AI Response"
                    })
                    
                    # Format timestamp
                    if "Date" in display_df.columns:
                        display_df["Date"] = pd.to_datetime(display_df["Date"]).dt.strftime('%Y-%m-%d %H:%M')
                    
                    # Truncate long text
                    for col in ["Your Question", "AI Response"]:
                        if col in display_df.columns:
                            display_df[col] = display_df[col].apply(lambda x: x[:100] + "..." if isinstance(x, str) and len(x) > 100 else x)
                    
                    # Display as table
                    st.dataframe(display_df, use_container_width=True)
                    
                    # Add option to view full conversation
                    if not df.empty:
                        selected_idx = st.selectbox("Select conversation to view details:", 
                                                  range(len(df)),
                                                  format_func=lambda i: f"{df.iloc[i].get('timestamp', 'Unknown')} - {df.iloc[i].get('user_query', '')[:30]}...")
                        
                        if selected_idx is not None:
                            selected_conv = df.iloc[selected_idx]
                            st.subheader("Conversation Details")
                            
                            st.markdown("**Your Question:**")
                            st.markdown(selected_conv.get("user_query", ""))
                            
                            st.markdown("**AI Response:**")
                            st.markdown(selected_conv.get("assistant_response", ""))
                            
                            # Display sources if available
                            if "sources" in selected_conv and selected_conv["sources"]:
                                st.markdown("**Sources:**")
                                for src in selected_conv["sources"]:
                                    st.markdown(f"- {src}")
                            
                            # Option to use this conversation in chat
                            if st.button("Continue this conversation"):
                                # Add to current chat session
                                st.session_state.messages.append({"role": "user", "content": selected_conv.get("user_query", "")})
                                st.session_state.messages.append({"role": "assistant", "content": selected_conv.get("assistant_response", "")})
                                # Switch to chat tab
                                st.session_state.current_tab = "Chat"
                                st.experimental_rerun()
                else:
                    st.error("Unexpected history format. Some columns are missing.")
            else:
                st.info("No conversation history found.")
    except Exception as e:
        logger.error(f"Error displaying history: {e}")
        st.error(f"Error loading conversation history: {str(e)}")
    
    # Sync to Hugging Face Hub button
    if HF_DATASET_NAME:
        if st.button("Sync History to Hugging Face Hub"):
            with st.spinner("Syncing history..."):
                success = chat_history_manager.sync_to_hub()
                if success:
                    st.success("History successfully synced to Hugging Face Hub!")
                else:
                    st.error("Failed to sync history. Check logs for details.")

# Settings tab (new)
with tabs[3]:
    if st.session_state.current_tab != "Settings":
        st.session_state.current_tab = "Settings"
    
    st.header("Settings")
    
    # System information
    st.subheader("System Information")
    system_info = {
        "LLM Model": LLM_MODEL,
        "Embedding Model": EMBEDDING_MODEL,
        "HF Dataset": HF_DATASET_NAME or "Not configured",
        "Telegram Enabled": "Yes" if TELEGRAM_ENABLED else "No"
    }
    
    for key, value in system_info.items():
        st.markdown(f"**{key}:** {value}")
    
    # Telegram settings
    st.subheader("Telegram Integration")
    
    telegram_status = "Not configured"
    if telegram_bot:
        telegram_status = st.session_state.telegram_status
    
    st.markdown(f"**Status:** {telegram_status}")
    
    col1, col2 = st.columns(2)
    
    with col1:
        if telegram_bot and st.session_state.telegram_status != "Running":
            if st.button("Start Telegram Bot"):
                try:
                    success = telegram_bot.start()
                    if success:
                        st.session_state.telegram_status = "Running"
                        st.success("Telegram bot started!")
                    else:
                        st.error("Failed to start Telegram bot. Check logs for details.")
                except Exception as e:
                    logger.error(f"Error starting Telegram bot: {e}")
                    st.error(f"Error: {str(e)}")
    
    with col2:
        if telegram_bot and st.session_state.telegram_status == "Running":
            if st.button("Stop Telegram Bot"):
                try:
                    telegram_bot.stop()
                    st.session_state.telegram_status = "Stopped"
                    st.info("Telegram bot stopped.")
                except Exception as e:
                    logger.error(f"Error stopping Telegram bot: {e}")
                    st.error(f"Error: {str(e)}")
    
    if telegram_bot:
        with st.expander("Telegram Bot Settings"):
            st.markdown("""
            To configure the Telegram bot, set these environment variables:
            - `TELEGRAM_ENABLED`: Set to `true` to enable the bot
            - `TELEGRAM_BOT_TOKEN`: Your Telegram bot token
            - `TELEGRAM_ALLOWED_USERS`: Comma-separated list of Telegram user IDs (optional)
            """)
            
            if telegram_bot.allowed_user_ids:
                st.markdown("**Allowed User IDs:**")
                for user_id in telegram_bot.allowed_user_ids:
                    st.markdown(f"- {user_id}")
            else:
                st.markdown("The bot will respond to all users (no user restrictions configured).")
                
            # Show Telegram bot instructions
            st.markdown("### Telegram Bot Commands")
            st.markdown("""
            - **/start**: Start a conversation with the bot
            - **/help**: Shows available commands
            - **/search**: Use `/search your query` to search your knowledge base
            - **Direct messages**: Send any message to chat with your second brain
            
            #### How to Set Up Your Telegram Bot
            1. Talk to [@BotFather](https://t.me/botfather) on Telegram
            2. Use the `/newbot` command to create a new bot
            3. Get your bot token and add it to your `.env` file
            4. Set `TELEGRAM_ENABLED=true` in your `.env` file
            5. To find your Telegram user ID, talk to [@userinfobot](https://t.me/userinfobot)
            """)
    else:
        st.info("Telegram integration is not enabled. Configure your .env file to enable it.")
    
    # Settings for Hugging Face Dataset persistence
    st.subheader("Hugging Face Dataset Settings")
    
    if HF_DATASET_NAME:
        st.markdown(f"**Dataset Name:** {HF_DATASET_NAME}")
        st.markdown(f"**Local History File:** {chat_history_manager.local_file}")
        
        # HF Dataset instructions
        with st.expander("Setup Instructions"):
            st.markdown("""
            ### Setting up Hugging Face Dataset Persistence
            
            1. Create a private dataset repository on Hugging Face Hub
            2. Set your API token in the `.env` file as `HF_API_KEY`
            3. Set your dataset name as `HF_DATASET_NAME` (format: username/repo-name)
            
            Your chat history will be automatically synced to the Hub.
            """)
    else:
        st.info("Hugging Face Dataset persistence is not configured. Set HF_DATASET_NAME in your .env file.")

# Run Telegram bot on startup if enabled
if telegram_bot and TELEGRAM_ENABLED and st.session_state.telegram_status == "Not started":
    try:
        success = telegram_bot.start()
        if success:
            st.session_state.telegram_status = "Running"
            logger.info("Telegram bot started automatically")
    except Exception as e:
        logger.error(f"Error auto-starting Telegram bot: {e}")
        st.session_state.telegram_status = "Error"

if __name__ == "__main__":
    # This is used when running the file directly
    pass