|
import os |
|
import sys |
|
import uvicorn |
|
from fastapi import FastAPI, HTTPException, Depends, Request, File, UploadFile |
|
from fastapi.responses import JSONResponse |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel |
|
from typing import List, Dict, Any, Optional |
|
import tempfile |
|
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
from app.core.agent import AssistantAgent |
|
from app.core.ingestion import DocumentProcessor |
|
from app.utils.helpers import get_document_path |
|
from app.config import create_env_example |
|
|
|
|
|
create_env_example() |
|
|
|
|
|
app = FastAPI( |
|
title="Personal AI Assistant API", |
|
description="API for a personal AI assistant with RAG capabilities", |
|
version="1.0.0" |
|
) |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
agent = AssistantAgent() |
|
document_processor = DocumentProcessor(agent.memory_manager) |
|
|
|
|
|
class QueryRequest(BaseModel): |
|
query: str |
|
|
|
class QueryResponse(BaseModel): |
|
answer: str |
|
sources: List[Dict[str, Any]] |
|
|
|
class TextIngestionRequest(BaseModel): |
|
text: str |
|
metadata: Optional[Dict[str, Any]] = None |
|
|
|
|
|
@app.get("/") |
|
async def root(): |
|
return {"message": "Welcome to the Personal AI Assistant API"} |
|
|
|
@app.post("/query", response_model=QueryResponse) |
|
async def query(request: QueryRequest): |
|
"""Query the assistant with a question.""" |
|
try: |
|
response = agent.query(request.query) |
|
|
|
|
|
agent.add_conversation_to_memory(request.query, response["answer"]) |
|
|
|
return response |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/ingest/text") |
|
async def ingest_text(request: TextIngestionRequest): |
|
"""Ingest text into the knowledge base.""" |
|
try: |
|
metadata = request.metadata or {} |
|
|
|
|
|
ids = document_processor.ingest_text(request.text, metadata) |
|
|
|
return {"message": "Text ingested successfully", "ids": ids} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/ingest/file") |
|
async def ingest_file(file: UploadFile = File(...)): |
|
"""Ingest a file into the knowledge base.""" |
|
try: |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file.filename.split('.')[-1]}") as tmp: |
|
content = await file.read() |
|
tmp.write(content) |
|
tmp_path = tmp.name |
|
|
|
|
|
doc_path = get_document_path(file.filename) |
|
|
|
|
|
with open(doc_path, "wb") as f: |
|
|
|
await file.seek(0) |
|
content = await file.read() |
|
f.write(content) |
|
|
|
|
|
metadata = {"original_name": file.filename} |
|
ids = document_processor.ingest_file(tmp_path, metadata) |
|
|
|
|
|
os.unlink(tmp_path) |
|
|
|
return {"message": f"File {file.filename} ingested successfully", "ids": ids} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run("app.main:app", host="0.0.0.0", port=8000, reload=True) |