anime / app.py
panelforge's picture
Update app.py
297f6c5 verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from diffusers import DiffusionPipeline
from tags_straight import TAGS_STRAIGHT
from tags_lesbian import TAGS_LESBIAN
from tags_gay import TAGS_GAY
PROMPT_PREFIXES = {
"Prompt Input": "score_9, score_8_up, score_7_up, source_anime",
"Straight": "score_9, score_8_up, score_7_up, source_anime, ",
"Lesbian": "score_9, score_8_up, score_7_up, source_anime, ",
"Gay": "score_9, score_8_up, score_7_up, source_anime, yaoi, "
}
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device == "cuda" else torch.float32
# model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl"
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v140-sdxl"
# model_repo_id = "John6666/pony-realism-v23-ultra-sdxl"
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def create_checkboxes(tag_dict, suffix):
categories = list(tag_dict.keys())
return [gr.CheckboxGroup(choices=list(tag_dict[cat].keys()), label=f"{cat} Tags ({suffix})") for cat in categories], categories
straight_checkboxes, _ = create_checkboxes(TAGS_STRAIGHT, "Straight")
lesbian_checkboxes, _ = create_checkboxes(TAGS_LESBIAN, "Lesbian")
gay_checkboxes, _ = create_checkboxes(TAGS_GAY, "Gay")
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height,
guidance_scale, num_inference_steps, active_tab, *tag_selections,
progress=gr.Progress(track_tqdm=True)):
prefix = PROMPT_PREFIXES.get(active_tab, "score_9, score_8_up, score_7_up, source_anime")
if active_tab == "Prompt Input":
final_prompt = f"{prefix}, {prompt}"
else:
combined_tags = []
straight_len = len(TAGS_STRAIGHT)
lesbian_len = len(TAGS_LESBIAN)
gay_len = len(TAGS_GAY)
if active_tab == "Straight":
for (tag_name, tag_dict), selected in zip(TAGS_STRAIGHT.items(), tag_selections[:straight_len]):
combined_tags.extend([tag_dict[tag] for tag in selected])
elif active_tab == "Lesbian":
offset = straight_len
for (tag_name, tag_dict), selected in zip(TAGS_LESBIAN.items(), tag_selections[offset:offset+lesbian_len]):
combined_tags.extend([tag_dict[tag] for tag in selected])
elif active_tab == "Gay":
offset = straight_len + lesbian_len
for (tag_name, tag_dict), selected in zip(TAGS_GAY.items(), tag_selections[offset:offset+gay_len]):
combined_tags.extend([tag_dict[tag] for tag in selected])
tag_string = ", ".join(combined_tags)
final_prompt = f"{prefix} {tag_string}"
negative_base = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark"
full_negative_prompt = f"{negative_base}, {negative_prompt}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=final_prompt,
negative_prompt=full_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}"
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
#left-column {
width: 50%;
display: inline-block;
padding: 20px;
vertical-align: top;
}
#right-column {
width: 50%;
display: inline-block;
vertical-align: top;
padding: 20px;
margin-top: 53px;
}
#run-button {
width: 100%;
margin-top: 10px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(elem_id="left-column"):
gr.Markdown("# Rainbow Media X")
result = gr.Image(label="Result", show_label=False)
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative prompt", placeholder="Enter negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=10, step=0.1, value=7)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=35)
run_button = gr.Button("Run", elem_id="run-button")
with gr.Column(elem_id="right-column"):
active_tab = gr.State("Prompt Input")
with gr.Tabs() as tabs:
with gr.TabItem("Prompt Input") as prompt_tab:
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt")
prompt_tab.select(lambda: "Prompt Input", outputs=active_tab)
with gr.TabItem("Straight") as straight_tab:
for cb in straight_checkboxes:
cb.render()
straight_tab.select(lambda: "Straight", outputs=active_tab)
with gr.TabItem("Lesbian") as lesbian_tab:
for cb in lesbian_checkboxes:
cb.render()
lesbian_tab.select(lambda: "Lesbian", outputs=active_tab)
with gr.TabItem("Gay") as gay_tab:
for cb in gay_checkboxes:
cb.render()
gay_tab.select(lambda: "Gay", outputs=active_tab)
run_button.click(
fn=infer,
inputs=[
prompt, negative_prompt, seed, randomize_seed,
width, height, guidance_scale, num_inference_steps,
active_tab,
*straight_checkboxes,
*lesbian_checkboxes,
*gay_checkboxes
],
outputs=[result, seed, prompt_info]
)
demo.queue().launch()