Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
import spaces | |
from diffusers import DiffusionPipeline | |
from tags_straight import TAGS_STRAIGHT | |
from tags_lesbian import TAGS_LESBIAN | |
from tags_gay import TAGS_GAY | |
PROMPT_PREFIXES = { | |
"Prompt Input": "score_9, score_8_up, score_7_up, source_anime", | |
"Straight": "score_9, score_8_up, score_7_up, source_anime, ", | |
"Lesbian": "score_9, score_8_up, score_7_up, source_anime, ", | |
"Gay": "score_9, score_8_up, score_7_up, source_anime, yaoi, " | |
} | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if device == "cuda" else torch.float32 | |
# model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v8-sdxl" | |
model_repo_id = "John6666/wai-ani-nsfw-ponyxl-v140-sdxl" | |
# model_repo_id = "John6666/pony-realism-v23-ultra-sdxl" | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def create_checkboxes(tag_dict, suffix): | |
categories = list(tag_dict.keys()) | |
return [gr.CheckboxGroup(choices=list(tag_dict[cat].keys()), label=f"{cat} Tags ({suffix})") for cat in categories], categories | |
straight_checkboxes, _ = create_checkboxes(TAGS_STRAIGHT, "Straight") | |
lesbian_checkboxes, _ = create_checkboxes(TAGS_LESBIAN, "Lesbian") | |
gay_checkboxes, _ = create_checkboxes(TAGS_GAY, "Gay") | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, | |
guidance_scale, num_inference_steps, active_tab, *tag_selections, | |
progress=gr.Progress(track_tqdm=True)): | |
prefix = PROMPT_PREFIXES.get(active_tab, "score_9, score_8_up, score_7_up, source_anime") | |
if active_tab == "Prompt Input": | |
final_prompt = f"{prefix}, {prompt}" | |
else: | |
combined_tags = [] | |
straight_len = len(TAGS_STRAIGHT) | |
lesbian_len = len(TAGS_LESBIAN) | |
gay_len = len(TAGS_GAY) | |
if active_tab == "Straight": | |
for (tag_name, tag_dict), selected in zip(TAGS_STRAIGHT.items(), tag_selections[:straight_len]): | |
combined_tags.extend([tag_dict[tag] for tag in selected]) | |
elif active_tab == "Lesbian": | |
offset = straight_len | |
for (tag_name, tag_dict), selected in zip(TAGS_LESBIAN.items(), tag_selections[offset:offset+lesbian_len]): | |
combined_tags.extend([tag_dict[tag] for tag in selected]) | |
elif active_tab == "Gay": | |
offset = straight_len + lesbian_len | |
for (tag_name, tag_dict), selected in zip(TAGS_GAY.items(), tag_selections[offset:offset+gay_len]): | |
combined_tags.extend([tag_dict[tag] for tag in selected]) | |
tag_string = ", ".join(combined_tags) | |
final_prompt = f"{prefix} {tag_string}" | |
negative_base = "worst quality, bad quality, jpeg artifacts, source_cartoon, 3d, (censor), monochrome, blurry, lowres, watermark" | |
full_negative_prompt = f"{negative_base}, {negative_prompt}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=final_prompt, | |
negative_prompt=full_negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator | |
).images[0] | |
return image, seed, f"Prompt used: {final_prompt}\nNegative prompt used: {full_negative_prompt}" | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1280px; | |
} | |
#left-column { | |
width: 50%; | |
display: inline-block; | |
padding: 20px; | |
vertical-align: top; | |
} | |
#right-column { | |
width: 50%; | |
display: inline-block; | |
vertical-align: top; | |
padding: 20px; | |
margin-top: 53px; | |
} | |
#run-button { | |
width: 100%; | |
margin-top: 10px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(elem_id="left-column"): | |
gr.Markdown("# Rainbow Media X") | |
result = gr.Image(label="Result", show_label=False) | |
prompt_info = gr.Textbox(label="Prompts Used", lines=3, interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative prompt", placeholder="Enter negative prompt") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=10, step=0.1, value=7) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=35) | |
run_button = gr.Button("Run", elem_id="run-button") | |
with gr.Column(elem_id="right-column"): | |
active_tab = gr.State("Prompt Input") | |
with gr.Tabs() as tabs: | |
with gr.TabItem("Prompt Input") as prompt_tab: | |
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Enter your prompt") | |
prompt_tab.select(lambda: "Prompt Input", outputs=active_tab) | |
with gr.TabItem("Straight") as straight_tab: | |
for cb in straight_checkboxes: | |
cb.render() | |
straight_tab.select(lambda: "Straight", outputs=active_tab) | |
with gr.TabItem("Lesbian") as lesbian_tab: | |
for cb in lesbian_checkboxes: | |
cb.render() | |
lesbian_tab.select(lambda: "Lesbian", outputs=active_tab) | |
with gr.TabItem("Gay") as gay_tab: | |
for cb in gay_checkboxes: | |
cb.render() | |
gay_tab.select(lambda: "Gay", outputs=active_tab) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
prompt, negative_prompt, seed, randomize_seed, | |
width, height, guidance_scale, num_inference_steps, | |
active_tab, | |
*straight_checkboxes, | |
*lesbian_checkboxes, | |
*gay_checkboxes | |
], | |
outputs=[result, seed, prompt_info] | |
) | |
demo.queue().launch() | |