Spaces:
Sleeping
Sleeping
File size: 34,962 Bytes
f1427c2 39f25b4 e8d76df fdc2d24 be20a8c e224c96 4ab1b42 6659f73 a5e25ce e75a7af 6659f73 e75a7af 6659f73 e75a7af 6659f73 e75a7af 6659f73 e75a7af 80b0eee e75a7af 80b0eee e75a7af 80b0eee e75a7af 6659f73 e75a7af 6659f73 e75a7af 6659f73 bee9831 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 6659f73 ca9aa54 80b0eee 13ea9f9 dd79e85 8c184cc ad444e5 80b0eee 8c184cc 80b0eee 6659f73 80b0eee 8c184cc 80b0eee 8c184cc 80b0eee 8c184cc 80b0eee 8c184cc 6659f73 80b0eee 8c184cc 80b0eee 8c184cc 80b0eee 8c184cc 80b0eee 8c184cc 80b0eee 8c184cc 80b0eee f2ee8f0 8c184cc f2ee8f0 6659f73 8c184cc f2ee8f0 6659f73 f2ee8f0 ca9aa54 f2ee8f0 8c184cc 6659f73 8c184cc 6659f73 8c184cc 6659f73 8c184cc 6659f73 8c184cc f2ee8f0 6659f73 f2ee8f0 8c184cc 6659f73 f2ee8f0 bee9831 6659f73 bee9831 6659f73 f2ee8f0 6659f73 388d8b4 0f9c95c faa4b49 711eaf7 8c184cc 4ab1b42 b2769ed b82a261 b2769ed b82a261 b2769ed b82a261 b2769ed b82a261 b2769ed b82a261 b2769ed b82a261 b2769ed b82a261 b2769ed b82a261 b2769ed 63128f0 b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed 0bbc8fc b2769ed b4f1068 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
# import os
# import nltk
# import asyncio
# import torch
# import logging
# from nltk.tokenize import sent_tokenize
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# from typing import List
# # Configure logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Load optional secret key (e.g., for logging/monitoring access)
# API_KEY = os.getenv("API_KEY")
# if API_KEY:
# logger.info("API_KEY loaded successfully.")
# else:
# logger.warning("API_KEY not found. You may set it via Hugging Face secrets.")
# # NLTK setup
# nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
# nltk.data.path.append(nltk_data_path)
# # Download required tokenizer
# try:
# nltk.data.find("tokenizers/punkt")
# except LookupError:
# nltk.download("punkt", download_dir=nltk_data_path)
# # Load Pegasus model and tokenizer
# try:
# logger.info("Loading Pegasus model from /app/pegasus_model...")
# pegasus_model = PegasusForConditionalGeneration.from_pretrained("/app/pegasus_model")
# tokenizer = PegasusTokenizer.from_pretrained("/app/pegasus_model")
# logger.info("Pegasus model loaded successfully.")
# except Exception as e:
# logger.error(f"Error loading Pegasus model: {e}")
# raise
# # Generation config
# MAX_TOKENS = 1024
# TEMPERATURE = 0.9
# TOP_K = 50
# TOP_P = 0.95
# NUM_BEAMS = 3
# def split_into_sentences(text: str) -> List[str]:
# """Split text into sentences while preserving paragraph breaks."""
# sentences = []
# for paragraph in text.split('\n'):
# if paragraph.strip():
# sentences.extend(sent_tokenize(paragraph))
# else:
# sentences.append('') # preserve empty lines
# return sentences
# async def paraphrase_sentence(sentence: str) -> str:
# """Paraphrase a single sentence using Pegasus."""
# if not sentence.strip():
# return sentence
# try:
# inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding=True)
# outputs = pegasus_model.generate(
# **inputs,
# max_length=MAX_TOKENS,
# num_beams=NUM_BEAMS,
# early_stopping=True,
# temperature=TEMPERATURE,
# top_k=TOP_K,
# top_p=TOP_P,
# do_sample=True
# )
# paraphrased = tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Ensure meaning is preserved (not too short, not identical)
# if paraphrased.lower() != sentence.lower() and len(paraphrased.split()) >= len(sentence.split()) * 0.7:
# return paraphrased
# except Exception as e:
# logger.error(f"Failed to paraphrase sentence: {e}")
# return sentence
# async def paraphrase_paragraph(paragraph: str) -> str:
# """Paraphrase each sentence within a paragraph."""
# if not paragraph.strip():
# return paragraph
# sentences = sent_tokenize(paragraph)
# paraphrased_sentences = await asyncio.gather(*[paraphrase_sentence(s) for s in sentences])
# return ' '.join(paraphrased_sentences)
# async def get_paraphrased_text(text: str) -> str:
# """Main interface: paraphrase a long multi-paragraph text."""
# if not text.strip():
# return text
# paragraphs = text.split('\n')
# paraphrased_paragraphs = await asyncio.gather(*[paraphrase_paragraph(p) for p in paragraphs])
# return '\n'.join(paraphrased_paragraphs)
###-------------- working properly! -----------------------
# import os
# import nltk
# import asyncio
# import torch
# import logging
# from nltk.tokenize import sent_tokenize
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# from typing import List
# # Configure logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Optional: Hugging Face secrets
# API_KEY = os.getenv("API_KEY")
# if API_KEY:
# logger.info("API_KEY loaded successfully.")
# else:
# logger.warning("API_KEY not found. You may set it via Hugging Face secrets.")
# # NLTK setup
# nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
# nltk.data.path.append(nltk_data_path)
# try:
# nltk.data.find("tokenizers/punkt")
# except LookupError:
# nltk.download("punkt", download_dir=nltk_data_path)
# # Load model on CPU with optimizations
# torch_device = "cpu"
# model_name = "tuner007/pegasus_paraphrase"
# try:
# logger.info(f"Loading Pegasus model '{model_name}' on CPU...")
# tokenizer = PegasusTokenizer.from_pretrained(model_name)
# pegasus_model = PegasusForConditionalGeneration.from_pretrained(
# model_name,
# torch_dtype=torch.float32,
# low_cpu_mem_usage=True
# ).to(torch_device).eval()
# logger.info("Model loaded successfully.")
# except Exception as e:
# logger.error(f"Error loading model: {e}")
# raise
# # Generation config
# MAX_TOKENS = 1024
# NUM_BEAMS = 3
# TEMPERATURE = 1.0
# TOP_K = 50
# TOP_P = 0.95
# def split_into_sentences(text: str) -> List[str]:
# """Split text into sentences while preserving paragraph breaks."""
# sentences = []
# for paragraph in text.split('\n'):
# if paragraph.strip():
# sentences.extend(sent_tokenize(paragraph))
# else:
# sentences.append('') # preserve empty lines
# return sentences
# async def paraphrase_sentence(sentence: str) -> str:
# """Paraphrase a single sentence using Pegasus."""
# if not sentence.strip():
# return sentence
# try:
# inputs = tokenizer(sentence, return_tensors="pt", truncation=True, padding=True).to(torch_device)
# outputs = pegasus_model.generate(
# **inputs,
# max_length=MAX_TOKENS,
# num_beams=NUM_BEAMS,
# early_stopping=True,
# do_sample=False,
# temperature=TEMPERATURE,
# top_k=TOP_K,
# top_p=TOP_P
# )
# paraphrased = tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Filter out poor-quality paraphrases
# if paraphrased.lower() != sentence.lower() and len(paraphrased.split()) >= len(sentence.split()) * 0.7:
# return paraphrased
# except Exception as e:
# logger.error(f"Failed to paraphrase sentence: {e}")
# return sentence
# async def paraphrase_paragraph(paragraph: str) -> str:
# """Paraphrase each sentence within a paragraph."""
# if not paragraph.strip():
# return paragraph
# sentences = sent_tokenize(paragraph)
# paraphrased_sentences = await asyncio.gather(*[paraphrase_sentence(s) for s in sentences])
# return ' '.join(paraphrased_sentences)
# async def get_paraphrased_text(text: str) -> str:
# """Main interface: paraphrase a long multi-paragraph text."""
# if not text.strip():
# return text
# paragraphs = text.split('\n')
# paraphrased_paragraphs = await asyncio.gather(*[paraphrase_paragraph(p) for p in paragraphs])
# return '\n'.join(paraphrased_paragraphs)
##### update #####
# import os
# import nltk
# import asyncio
# import torch
# import logging
# from typing import List
# from nltk.tokenize import sent_tokenize
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# # Setup logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Load optional API key (for HF Spaces secrets if used)
# API_KEY = os.getenv("API_KEY")
# if API_KEY:
# logger.info("API_KEY loaded successfully.")
# else:
# logger.warning("API_KEY not found. Continuing without it.")
# # Ensure NLTK data is available
# nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
# nltk.data.path.append(nltk_data_path)
# try:
# nltk.data.find("tokenizers/punkt")
# except LookupError:
# nltk.download("punkt", download_dir=nltk_data_path)
# # Model setup
# MAX_TOKENS = 128 # lower max length for faster response
# MAX_INPUT_LENGTH = 60
# NUM_BEAMS = 3
# torch_device = "cpu"
# model_name = "tuner007/pegasus_paraphrase"
# logger.info(f"Loading model '{model_name}'...")
# tokenizer = PegasusTokenizer.from_pretrained(model_name)
# model = PegasusForConditionalGeneration.from_pretrained(
# model_name,
# torch_dtype=torch.float32,
# low_cpu_mem_usage=True
# ).to(torch_device).eval()
# # --- Utilities ---
# def split_into_sentences(text: str) -> List[str]:
# """Preserve paragraph structure while splitting into sentences."""
# sentences = []
# for para in text.split('\n'):
# if para.strip():
# sentences.extend(sent_tokenize(para))
# else:
# sentences.append('') # blank line = paragraph break
# return sentences
# def chunk_sentence(sentence: str, max_words: int = 50) -> List[str]:
# """Break long sentence into smaller chunks."""
# words = sentence.split()
# if len(words) <= max_words:
# return [sentence]
# return [' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)]
# # --- Paraphrasing ---
# async def paraphrase_sentence(sentence: str) -> str:
# """Paraphrase a single sentence or chunk."""
# if not sentence.strip():
# return sentence
# chunks = chunk_sentence(sentence)
# rewritten_chunks = []
# for chunk in chunks:
# try:
# inputs = tokenizer(chunk, return_tensors="pt", truncation=True, max_length=MAX_INPUT_LENGTH).to(torch_device)
# if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
# logger.warning("Chunk too long, skipping.")
# rewritten_chunks.append(chunk)
# continue
# outputs = model.generate(
# **inputs,
# max_length=MAX_TOKENS,
# num_beams=NUM_BEAMS,
# early_stopping=True,
# do_sample=False,
# )
# result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# if result.lower() != chunk.lower() and len(result.split()) >= len(chunk.split()) * 0.7:
# rewritten_chunks.append(result)
# else:
# rewritten_chunks.append(chunk)
# except Exception as e:
# logger.error(f"Error during paraphrase: {e}")
# rewritten_chunks.append(chunk)
# return ' '.join(rewritten_chunks)
# async def paraphrase_paragraph(paragraph: str) -> str:
# """Process each sentence in a paragraph."""
# if not paragraph.strip():
# return paragraph
# sentences = sent_tokenize(paragraph)
# rewritten = await asyncio.gather(*(paraphrase_sentence(s) for s in sentences))
# return ' '.join(rewritten)
# async def get_paraphrased_text(text: str) -> str:
# """Main method to rewrite input while preserving structure."""
# if not text.strip():
# return text
# paragraphs = text.split('\n')
# rewritten = await asyncio.gather(*(paraphrase_paragraph(p) for p in paragraphs))
# return '\n'.join(rewritten)
# import os
# import nltk
# import asyncio
# import torch
# import logging
# from typing import List
# from nltk.tokenize import sent_tokenize
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# # Setup logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Optional API key (e.g., for Hugging Face secrets)
# API_KEY = os.getenv("API_KEY")
# if API_KEY:
# logger.info("API_KEY loaded successfully.")
# else:
# logger.warning("API_KEY not found. Continuing without it.")
# # Ensure NLTK tokenizer is available
# nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
# nltk.data.path.append(nltk_data_path)
# try:
# nltk.data.find("tokenizers/punkt")
# except LookupError:
# nltk.download("punkt", download_dir=nltk_data_path)
# # Model configuration
# MAX_TOKENS = 128 # Max output length
# MAX_INPUT_LENGTH = 60 # Max input token length per chunk
# NUM_BEAMS = 3
# torch_device = "cpu"
# model_name = "tuner007/pegasus_paraphrase"
# logger.info(f"Loading model '{model_name}'...")
# tokenizer = PegasusTokenizer.from_pretrained(model_name)
# model = PegasusForConditionalGeneration.from_pretrained(
# model_name,
# torch_dtype=torch.float32,
# low_cpu_mem_usage=True
# ).to(torch_device).eval()
# # ----------- Utilities -----------
# def split_into_sentences(text: str) -> List[str]:
# """Preserve paragraph breaks while tokenizing into sentences."""
# sentences = []
# for para in text.split('\n'):
# if para.strip():
# sentences.extend(sent_tokenize(para))
# else:
# sentences.append('') # preserve paragraph spacing
# return sentences
# def chunk_sentence(sentence: str, max_words: int = 50) -> List[str]:
# """Split very long sentences into smaller word chunks."""
# words = sentence.split()
# if len(words) <= max_words:
# return [sentence]
# return [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
# # ----------- Core Paraphrasing -----------
# async def paraphrase_sentence(sentence: str) -> str:
# """Paraphrase a sentence or its smaller chunks if long."""
# if not sentence.strip():
# return sentence # preserve blank lines
# chunks = chunk_sentence(sentence)
# rewritten_chunks = []
# for chunk in chunks:
# try:
# inputs = tokenizer(
# chunk,
# return_tensors="pt",
# truncation=True,
# max_length=MAX_INPUT_LENGTH,
# ).to(torch_device)
# if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
# logger.warning(f"Chunk too long, skipping: {chunk}")
# rewritten_chunks.append(chunk)
# continue
# outputs = model.generate(
# **inputs,
# max_length=MAX_TOKENS,
# num_beams=NUM_BEAMS,
# early_stopping=True,
# do_sample=False,
# )
# result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Sanity check: avoid broken or poor rewrites
# if (
# result.lower() != chunk.lower()
# and len(result.split()) >= max(3, int(len(chunk.split()) * 0.6))
# and not any(phrase in result.lower() for phrase in ["is a type of", "are 200", "the man is named"])
# ):
# rewritten_chunks.append(result)
# else:
# logger.warning(f"Low-quality rewrite or too similar: '{result}' <- '{chunk}'")
# rewritten_chunks.append(chunk)
# except Exception as e:
# logger.error(f"Error during paraphrasing: {e}")
# rewritten_chunks.append(chunk)
# return ' '.join(rewritten_chunks)
# async def paraphrase_paragraph(paragraph: str) -> str:
# """Rewrite each sentence within a paragraph."""
# if not paragraph.strip():
# return paragraph
# sentences = sent_tokenize(paragraph)
# rewritten_sentences = await asyncio.gather(*[paraphrase_sentence(s) for s in sentences])
# return ' '.join(rewritten_sentences)
# async def get_paraphrased_text(text: str) -> str:
# """Rewrite full text input while preserving paragraph structure."""
# if not text.strip():
# return text
# paragraphs = text.split('\n')
# rewritten_paragraphs = await asyncio.gather(*[paraphrase_paragraph(p) for p in paragraphs])
# return '\n'.join(rewritten_paragraphs)
#### --------------------------------- use the bitsandbytes INT8 quantization with transformers and accelerate ------------------------------------
# import os
# import nltk
# import asyncio
# import torch
# import logging
# from typing import List
# from nltk.tokenize import sent_tokenize
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# # Limit CPU threads for performance tuning (important in 2vCPU env)
# torch.set_num_threads(2)
# # Setup logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# API_KEY = os.getenv("API_KEY")
# if API_KEY:
# logger.info("API_KEY loaded successfully.")
# else:
# logger.warning("API_KEY not found. Continuing without it.")
# # Ensure punkt tokenizer is available
# nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
# nltk.data.path.append(nltk_data_path)
# try:
# nltk.data.find("tokenizers/punkt")
# except LookupError:
# nltk.download("punkt", download_dir=nltk_data_path)
# MAX_TOKENS = 128
# MAX_INPUT_LENGTH = 60
# NUM_BEAMS = 3
# torch_device = "cpu"
# model_name = "tuner007/pegasus_paraphrase"
# logger.info(f"Loading Pegasus model '{model_name}' for CPU...")
# tokenizer = PegasusTokenizer.from_pretrained(model_name)
# model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device).eval()
# # ----------- Utilities -----------
# def split_into_sentences(text: str) -> List[str]:
# """Preserve paragraph breaks while tokenizing into sentences."""
# sentences = []
# for para in text.split('\n'):
# if para.strip():
# sentences.extend(sent_tokenize(para))
# else:
# sentences.append('') # preserve blank lines
# return sentences
# def chunk_sentence(sentence: str, max_words: int = 50) -> List[str]:
# """Split very long sentences into smaller word chunks."""
# words = sentence.split()
# if len(words) <= max_words:
# return [sentence]
# return [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
# # ----------- Core Paraphrasing Logic -----------
# async def paraphrase_sentence(sentence: str) -> str:
# if not sentence.strip():
# return sentence # preserve blank lines
# chunks = chunk_sentence(sentence)
# rewritten_chunks = []
# for chunk in chunks:
# try:
# inputs = tokenizer(
# chunk,
# return_tensors="pt",
# truncation=True,
# max_length=MAX_INPUT_LENGTH,
# ).to(torch_device)
# outputs = model.generate(
# **inputs,
# max_length=MAX_TOKENS,
# num_beams=NUM_BEAMS,
# early_stopping=True,
# do_sample=False,
# )
# result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Quality checks
# if (
# result.lower() != chunk.lower()
# and len(result.split()) >= max(3, int(len(chunk.split()) * 0.6))
# and not any(phrase in result.lower() for phrase in ["is a type of", "are 200", "the man is named"])
# ):
# rewritten_chunks.append(result)
# else:
# logger.warning(f"Low-quality rewrite: '{result}' <- '{chunk}'")
# rewritten_chunks.append(chunk)
# except Exception as e:
# logger.error(f"Paraphrasing error: {e}")
# rewritten_chunks.append(chunk)
# return ' '.join(rewritten_chunks)
# async def paraphrase_paragraph(paragraph: str) -> str:
# if not paragraph.strip():
# return paragraph
# sentences = sent_tokenize(paragraph)
# rewritten_sentences = await asyncio.gather(*[paraphrase_sentence(s) for s in sentences])
# return ' '.join(rewritten_sentences)
# async def get_paraphrased_text(text: str) -> str:
# if not text.strip():
# return text
# paragraphs = text.split('\n')
# rewritten_paragraphs = await asyncio.gather(*[paraphrase_paragraph(p) for p in paragraphs])
# return '\n'.join(rewritten_paragraphs)
############## update the above code ####################
# import os
# import nltk
# import asyncio
# import torch
# import logging
# from typing import List
# from nltk.tokenize import sent_tokenize
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# # Limit CPU threads for performance tuning (especially in Hugging Face 2vCPU env)
# torch.set_num_threads(2)
# # Setup logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Optional API key
# API_KEY = os.getenv("API_KEY")
# if API_KEY:
# logger.info("API_KEY loaded successfully.")
# else:
# logger.warning("API_KEY not found. Continuing without it.")
# # Ensure punkt tokenizer is available
# nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
# nltk.data.path.append(nltk_data_path)
# try:
# nltk.data.find("tokenizers/punkt")
# except LookupError:
# nltk.download("punkt", download_dir=nltk_data_path)
# # Model config
# MAX_TOKENS = 128
# MAX_INPUT_LENGTH = 60
# NUM_BEAMS = 3
# torch_device = "cpu"
# model_name = "tuner007/pegasus_paraphrase"
# # Load tokenizer and model
# logger.info(f"Loading Pegasus model '{model_name}' for CPU...")
# tokenizer = PegasusTokenizer.from_pretrained(model_name)
# model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device).eval()
# # ----------- Utilities -----------
# def split_into_sentences(text: str) -> List[str]:
# """Preserve paragraph breaks while tokenizing into sentences."""
# sentences = []
# for para in text.split('\n'):
# if para.strip():
# sentences.extend(sent_tokenize(para))
# else:
# sentences.append('') # preserve blank lines
# return sentences
# def chunk_sentence(sentence: str, max_words: int = 50) -> List[str]:
# """Split very long sentences into smaller word chunks."""
# words = sentence.split()
# if len(words) <= max_words:
# return [sentence]
# return [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
# # ----------- Core Paraphrasing Logic -----------
# async def paraphrase_sentence(sentence: str) -> str:
# """Paraphrase a sentence or short chunk."""
# if not sentence.strip():
# return sentence # Preserve blank lines
# chunks = chunk_sentence(sentence)
# rewritten_chunks = []
# for chunk in chunks:
# try:
# inputs = tokenizer(
# chunk,
# return_tensors="pt",
# truncation=True,
# max_length=MAX_INPUT_LENGTH,
# ).to(torch_device)
# outputs = model.generate(
# **inputs,
# max_length=MAX_TOKENS,
# num_beams=NUM_BEAMS,
# early_stopping=True,
# do_sample=False,
# )
# result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Quality check
# if (
# result.lower() != chunk.lower()
# and len(result.split()) >= max(3, int(len(chunk.split()) * 0.6))
# and not any(phrase in result.lower() for phrase in ["is a type of", "are 200", "the man is named"])
# ):
# rewritten_chunks.append(result)
# else:
# logger.warning(f"Low-quality rewrite: '{result}' <- '{chunk}'")
# rewritten_chunks.append(chunk)
# except Exception as e:
# logger.error(f"Paraphrasing error: {e}")
# rewritten_chunks.append(chunk)
# return ' '.join(rewritten_chunks)
# async def paraphrase_paragraph(paragraph: str) -> str:
# """Paraphrase a paragraph by rewriting each sentence."""
# if not paragraph.strip():
# return paragraph # Preserve blank lines
# sentences = sent_tokenize(paragraph)
# rewritten_sentences = await asyncio.gather(*[paraphrase_sentence(s) for s in sentences])
# return ' '.join(rewritten_sentences)
# async def get_paraphrased_text(text: str) -> str:
# """Main paraphrasing function to handle full texts with paragraph preservation."""
# if not text.strip():
# return text
# paragraphs = text.split('\n')
# rewritten_paragraphs = await asyncio.gather(*[paraphrase_paragraph(p) for p in paragraphs])
# return '\n'.join(rewritten_paragraphs)
################# grammer logic add- improve them ##################
import os
import nltk
import asyncio
import torch
import logging
from typing import List
from nltk.tokenize import sent_tokenize
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# Limit CPU threads for performance tuning (especially in Hugging Face 2vCPU env)
torch.set_num_threads(2)
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Optional API key loading (if needed)
API_KEY = os.getenv("API_KEY")
if API_KEY:
logger.info("API_KEY loaded successfully.")
else:
logger.warning("API_KEY not found. Continuing without it.")
# Ensure punkt tokenizer is available
nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
nltk.data.path.append(nltk_data_path)
try:
nltk.data.find("tokenizers/punkt")
except LookupError:
nltk.download("punkt", download_dir=nltk_data_path)
# Model config
MAX_TOKENS = 128 # Output max tokens
MAX_INPUT_LENGTH = 60 # Input max tokens per chunk (pegasus prefers shorter input chunks)
NUM_BEAMS = 3
torch_device = "cpu"
model_name = "tuner007/pegasus_paraphrase"
# Load tokenizer and model
logger.info(f"Loading Pegasus model '{model_name}' for CPU...")
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device).eval()
# ----------- Utilities -----------
def split_into_sentences(text: str) -> List[str]:
"""Preserve paragraph breaks while tokenizing into sentences."""
sentences = []
for para in text.split('\n'):
if para.strip():
sentences.extend(sent_tokenize(para))
else:
sentences.append('') # preserve blank lines
return sentences
def chunk_sentence(sentence: str, max_words: int = 50) -> List[str]:
"""Split very long sentences into smaller word chunks."""
words = sentence.split()
if len(words) <= max_words:
return [sentence]
return [' '.join(words[i:i + max_words]) for i in range(0, len(words), max_words)]
def simple_grammar_fix(text: str) -> str:
"""
Very lightweight grammar fixer to capitalize sentences and fix spacing.
For production, consider integrating language models or grammar tools.
"""
# Capitalize first letter of each sentence
sentences = sent_tokenize(text)
fixed_sentences = []
for s in sentences:
s = s.strip()
if s:
s = s[0].upper() + s[1:]
fixed_sentences.append(s)
return " ".join(fixed_sentences).replace(" ,", ",").replace(" .", ".").replace(" !", "!").replace(" ?", "?")
# ----------- Core Paraphrasing Logic -----------
async def paraphrase_sentence(sentence: str) -> str:
"""Paraphrase a sentence or short chunk asynchronously."""
if not sentence.strip():
return sentence # Preserve blank lines
chunks = chunk_sentence(sentence)
rewritten_chunks = []
for chunk in chunks:
try:
inputs = tokenizer(
chunk,
return_tensors="pt",
truncation=True,
max_length=MAX_INPUT_LENGTH,
).to(torch_device)
outputs = model.generate(
**inputs,
max_length=MAX_TOKENS,
num_beams=NUM_BEAMS,
early_stopping=True,
do_sample=False,
no_repeat_ngram_size=2,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Quality check to avoid bad paraphrases and preserve meaning & length
if (
result.lower() != chunk.lower()
and len(result.split()) >= max(3, int(len(chunk.split()) * 0.6))
and not any(phrase in result.lower() for phrase in ["is a type of", "are 200", "the man is named"])
):
fixed_result = simple_grammar_fix(result)
rewritten_chunks.append(fixed_result)
else:
logger.warning(f"Low-quality rewrite detected, using original chunk.\nOriginal: {chunk}\nResult: {result}")
rewritten_chunks.append(chunk)
except Exception as e:
logger.error(f"Paraphrasing error: {e}")
rewritten_chunks.append(chunk)
return ' '.join(rewritten_chunks)
async def paraphrase_paragraph(paragraph: str) -> str:
"""Paraphrase a paragraph by rewriting each sentence asynchronously."""
if not paragraph.strip():
return paragraph # Preserve blank lines
sentences = sent_tokenize(paragraph)
rewritten_sentences = await asyncio.gather(*[paraphrase_sentence(s) for s in sentences])
return ' '.join(rewritten_sentences)
async def get_paraphrased_text(text: str) -> str:
"""Main paraphrasing function to handle full texts with paragraph preservation asynchronously."""
if not text.strip():
return text
paragraphs = text.split('\n')
rewritten_paragraphs = await asyncio.gather(*[paraphrase_paragraph(p) for p in paragraphs])
return '\n'.join(rewritten_paragraphs)
# Example synchronous wrapper (if you want sync calls)
def paraphrase_text_sync(text: str) -> str:
return asyncio.run(get_paraphrased_text(text))
######------------------------------- add minecraft terms ----------------------------------------------------------------------
# import os
# import nltk
# import torch
# import re
# import logging
# import asyncio
# from nltk.tokenize import sent_tokenize
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# from concurrent.futures import ThreadPoolExecutor
# from typing import List, Tuple, Dict
# # Configure logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # NLTK Setup
# nltk_data_path = os.getenv("NLTK_DATA", "/app/nltk_data")
# nltk.data.path.append(nltk_data_path)
# try:
# nltk.data.find('tokenizers/punkt')
# except LookupError:
# nltk.download('punkt', download_dir=nltk_data_path)
# # Model Loading with CPU optimization
# pegasus_model = PegasusForConditionalGeneration.from_pretrained(
# "/app/pegasus_model",
# low_cpu_mem_usage=True,
# torch_dtype=torch.float32
# ).eval()
# tokenizer = PegasusTokenizer.from_pretrained("/app/pegasus_model")
# # Configuration
# DYNAMIC_MAX_TOKENS = 768 # Base token length
# ABSOLUTE_MAX = 1024 # For technical descriptions
# NUM_BEAMS = 4 # Improved quality
# BATCH_SIZE = 3 # Optimal for 2vCPU
# MAX_WORKERS = 2 # Matches your 2vCPU
# # Dynamic Term Protection System
# def extract_protected_terms(text: str) -> set:
# """Auto-detect terms to protect from the input text"""
# protected = set()
# # Extract ALL-CAPS terms and phrases in quotes
# protected.update(re.findall(r'([A-Z][A-Z0-9_]+(?:\s[A-Z0-9_]+)*)', text))
# protected.update(re.findall(r'\"([^\"]+)\"', text))
# # Extract noun phrases with 2+ capital letters
# protected.update(
# phrase.strip() for phrase in re.findall(r'([A-Z][a-z]+(?:\s[A-Z][a-z]+)+)', text)
# if len(phrase.split()) > 1
# )
# return {term.lower() for term in protected}
# # Format Protection Patterns
# FORMAT_PATTERNS = [
# (r'\*\*(.*?)\*\*', 'BOLD'), # **bold text**
# (r'([A-Z]{2,}(?:\s[A-Z0-9_]+)*:)', 'HEADER'), # HEADERS:
# (r'\n- (.*?)(\n|$)', 'BULLET'), # - bullet points
# (r'`(.*?)`', 'CODE'), # `code`
# (r'\"(.*?)\"', 'QUOTE') # "quoted text"
# ]
# def protect_content(text: str) -> Tuple[str, Dict[str, str]]:
# """Dynamic content protection"""
# protected_terms = extract_protected_terms(text)
# restoration = {}
# protected_text = text
# # Protect formats
# for pattern, tag in FORMAT_PATTERNS:
# for match in re.finditer(pattern, protected_text):
# placeholder = f"PROTECT_{tag}_{len(restoration)}"
# protected_text = protected_text.replace(match.group(0), placeholder)
# restoration[placeholder] = match.group(0)
# # Protect terms (case-insensitive)
# words = re.split(r'(\W+)', protected_text)
# for i, word in enumerate(words):
# lower_word = word.lower()
# if lower_word in protected_terms:
# placeholder = f"TERM_{abs(hash(lower_word))}"
# words[i] = placeholder
# restoration[placeholder] = word
# protected_text = ''.join(words)
# return protected_text, restoration
# def restore_content(text: str, restoration: Dict[str, str]) -> str:
# """Restore protected content"""
# for placeholder in sorted(restoration.keys(), key=len, reverse=True):
# text = text.replace(placeholder, restoration[placeholder])
# return text
# def paraphrase_batch(sentences: List[str]) -> List[str]:
# """Quality-focused batch processing"""
# max_len = max(
# ABSOLUTE_MAX if len(s.split()) > 25 else DYNAMIC_MAX_TOKENS
# for s in sentences
# )
# inputs = tokenizer(
# sentences,
# return_tensors="pt",
# padding=True,
# truncation=True,
# max_length=max_len
# )
# outputs = pegasus_model.generate(
# **inputs,
# max_length=max_len + 64,
# num_beams=NUM_BEAMS,
# early_stopping=True,
# temperature=0.8,
# top_p=0.9,
# no_repeat_ngram_size=3,
# length_penalty=1.0,
# do_sample=False
# )
# return tokenizer.batch_decode(outputs, skip_special_tokens=True)
# async def process_paragraph(paragraph: str) -> str:
# """Paragraph processing pipeline"""
# if not paragraph.strip():
# return paragraph
# try:
# protected, restoration = protect_content(paragraph)
# sentences = sent_tokenize(protected)
# with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
# batches = [sentences[i:i+BATCH_SIZE] for i in range(0, len(sentences), BATCH_SIZE)]
# results = []
# for batch in batches:
# results.extend(paraphrase_batch(batch))
# return restore_content(' '.join(results), restoration)
# except Exception as e:
# logger.error(f"Paragraph processing failed: {e}")
# return paragraph
# async def get_paraphrased_text(text: str) -> str:
# """Main processing function"""
# paragraphs = [p for p in text.split('\n') if p.strip() or p == '']
# processed = await asyncio.gather(*[process_paragraph(p) for p in paragraphs])
# return '\n'.join(processed)
|