|
import os |
|
import json |
|
import requests |
|
import traceback |
|
import gradio as gr |
|
import pandas as pd |
|
from typing import Optional |
|
from dotenv import load_dotenv |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
load_dotenv() |
|
hf_token = os.getenv("HF_TOKEN") |
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.1" |
|
|
|
|
|
try: |
|
client = InferenceClient(model=MODEL_ID, token=hf_token) |
|
except Exception as e: |
|
raise RuntimeError(f"Model loading failed: {e}") |
|
|
|
|
|
class MistralAgent: |
|
def __init__(self): |
|
print("β
MistralAgent (Inference API) initialized.") |
|
|
|
def __call__(self, question: str) -> str: |
|
try: |
|
prompt = f"[INST] {question.strip()} [/INST]" |
|
response = client.text_generation(prompt, max_new_tokens=100, temperature=0.0, do_sample=False) |
|
return response.strip() |
|
except Exception as e: |
|
return f"LLM Error: {e}" |
|
|
|
|
|
def get_all_questions(api_url: str) -> list[dict]: |
|
resp = requests.get(f"{api_url}/questions", timeout=15) |
|
resp.raise_for_status() |
|
return resp.json() |
|
|
|
def submit_answers(api_url: str, username: str, code_link: str, answers: list[dict]) -> dict: |
|
payload = { |
|
"username": username, |
|
"agent_code": code_link, |
|
"answers": answers |
|
} |
|
resp = requests.post(f"{api_url}/submit", json=payload, timeout=60) |
|
resp.raise_for_status() |
|
return resp.json() |
|
|
|
|
|
def run_and_submit_all(profile: Optional[gr.OAuthProfile]): |
|
if not profile: |
|
return "β Please log in to Hugging Face using the button above.", None |
|
username = profile.username.strip() |
|
|
|
space_id = os.getenv("SPACE_ID", "") |
|
code_link = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "" |
|
|
|
try: |
|
agent = MistralAgent() |
|
except Exception as e: |
|
return f"β Error initializing agent: {e}", None |
|
|
|
try: |
|
questions_data = get_all_questions(DEFAULT_API_URL) |
|
except Exception as e: |
|
return f"β Failed to load questions: {e}", None |
|
|
|
answers_payload = [] |
|
results_log = [] |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question", "") |
|
if not task_id or not question_text: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
except Exception as e: |
|
submitted_answer = f"AGENT ERROR: {e}" |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
|
|
if not answers_payload: |
|
return "β No answers submitted.", pd.DataFrame(results_log) |
|
|
|
try: |
|
result_data = submit_answers(DEFAULT_API_URL, username, code_link, answers_payload) |
|
except requests.exceptions.HTTPError as e: |
|
try: |
|
detail = e.response.json().get("detail", e.response.text) |
|
except Exception: |
|
detail = e.response.text |
|
return f"β Submission Failed: HTTP {e.response.status_code}. Detail: {detail}", pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"β Submission Error: {e}", pd.DataFrame(results_log) |
|
|
|
score = result_data.get("score", "N/A") |
|
correct_count = result_data.get("correct_count", "?") |
|
total = result_data.get("total_attempted", "?") |
|
message = result_data.get("message", "") |
|
|
|
final_status = ( |
|
f"β
Submission Successful!\n" |
|
f"User: {username}\n" |
|
f"Score: {score}% ({correct_count}/{total} correct)\n" |
|
f"Message: {message}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# π§ Mistral-7B Agent Evaluation (via Inference API)") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Copy this Space and define your own agent logic. |
|
2. Log in with your Hugging Face account. |
|
3. Click βRun Evaluation & Submit All Answersβ to test and submit. |
|
""" |
|
) |
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Status", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Agent Answers", wrap=True) |
|
|
|
run_button.click(fn=run_and_submit_all, inputs=[], outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
print("Launching Gradio Interface...") |
|
demo.launch(debug=True, server_name="0.0.0.0", server_port=7860) |