Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,260 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact sibr@inria.fr and/or George.Drettakis@inria.fr
*/
#include <projects/gaussianviewer/renderer/GaussianView.hpp>
#include <core/graphics/GUI.hpp>
#include <thread>
#include <boost/asio.hpp>
#include <rasterizer.h>
#include <imgui_internal.h>
// Define the types and sizes that make up the contents of each Gaussian
// in the trained model.
typedef sibr::Vector3f Pos;
template<int D>
struct SHs
{
float shs[(D+1)*(D+1)*3];
};
struct Scale
{
float scale[3];
};
struct Rot
{
float rot[4];
};
template<int D>
struct RichPoint
{
Pos pos;
float n[3];
SHs<D> shs;
float opacity;
Scale scale;
Rot rot;
float filter;
};
float sigmoid(const float m1)
{
return 1.0f / (1.0f + exp(-m1));
}
float inverse_sigmoid(const float m1)
{
return log(m1 / (1.0f - m1));
}
# define CUDA_SAFE_CALL_ALWAYS(A) \
A; \
cudaDeviceSynchronize(); \
if (cudaPeekAtLastError() != cudaSuccess) \
SIBR_ERR << cudaGetErrorString(cudaGetLastError());
#if DEBUG || _DEBUG
# define CUDA_SAFE_CALL(A) CUDA_SAFE_CALL_ALWAYS(A)
#else
# define CUDA_SAFE_CALL(A) A
#endif
// Load the Gaussians from the given file.
template<int D>
int loadPly(const char* filename,
std::vector<Pos>& pos,
std::vector<SHs<3>>& shs,
std::vector<float>& opacities,
std::vector<Scale>& scales,
std::vector<Rot>& rot,
sibr::Vector3f& minn,
sibr::Vector3f& maxx)
{
std::ifstream infile(filename, std::ios_base::binary);
if (!infile.good())
SIBR_ERR << "Unable to find model's PLY file, attempted:\n" << filename << std::endl;
// "Parse" header (it has to be a specific format anyway)
std::string buff;
std::getline(infile, buff);
std::getline(infile, buff);
std::string dummy;
std::getline(infile, buff);
std::stringstream ss(buff);
int count;
ss >> dummy >> dummy >> count;
// Output number of Gaussians contained
SIBR_LOG << "Loading " << count << " Gaussian splats" << std::endl;
while (std::getline(infile, buff))
if (buff.compare("end_header") == 0)
break;
// Read all Gaussians at once (AoS)
std::vector<RichPoint<D>> points(count);
infile.read((char*)points.data(), count * sizeof(RichPoint<D>));
// Resize our SoA data
pos.resize(count);
shs.resize(count);
scales.resize(count);
rot.resize(count);
opacities.resize(count);
// Gaussians are done training, they won't move anymore. Arrange
// them according to 3D Morton order. This means better cache
// behavior for reading Gaussians that end up in the same tile
// (close in 3D --> close in 2D).
minn = sibr::Vector3f(FLT_MAX, FLT_MAX, FLT_MAX);
maxx = -minn;
for (int i = 0; i < count; i++)
{
maxx = maxx.cwiseMax(points[i].pos);
minn = minn.cwiseMin(points[i].pos);
}
std::vector<std::pair<uint64_t, int>> mapp(count);
for (int i = 0; i < count; i++)
{
sibr::Vector3f rel = (points[i].pos - minn).array() / (maxx - minn).array();
sibr::Vector3f scaled = ((float((1 << 21) - 1)) * rel);
sibr::Vector3i xyz = scaled.cast<int>();
uint64_t code = 0;
for (int i = 0; i < 21; i++) {
code |= ((uint64_t(xyz.x() & (1 << i))) << (2 * i + 0));
code |= ((uint64_t(xyz.y() & (1 << i))) << (2 * i + 1));
code |= ((uint64_t(xyz.z() & (1 << i))) << (2 * i + 2));
}
mapp[i].first = code;
mapp[i].second = i;
}
auto sorter = [](const std::pair < uint64_t, int>& a, const std::pair < uint64_t, int>& b) {
return a.first < b.first;
};
std::sort(mapp.begin(), mapp.end(), sorter);
// Move data from AoS to SoA
int SH_N = (D + 1) * (D + 1);
for (int k = 0; k < count; k++)
{
int i = mapp[k].second;
pos[k] = points[i].pos;
// Normalize quaternion
float length2 = 0;
for (int j = 0; j < 4; j++)
length2 += points[i].rot.rot[j] * points[i].rot.rot[j];
float length = sqrt(length2);
for (int j = 0; j < 4; j++)
rot[k].rot[j] = points[i].rot.rot[j] / length;
float det1 = 1;
float det2 = 1;
// Exponentiate scale
for(int j = 0; j < 3; j++)
{
float scale_component = exp(points[i].scale.scale[j]);
float filtered_scale = sqrt(scale_component*scale_component + points[i].filter*points[i].filter);
det1 *= scale_component*scale_component;
det2 *= scale_component*scale_component + points[i].filter*points[i].filter;
scales[k].scale[j] = filtered_scale;
}
float coef = sqrt(det1/det2);
// Activate alpha
opacities[k] = sigmoid(points[i].opacity) * coef;
shs[k].shs[0] = points[i].shs.shs[0];
shs[k].shs[1] = points[i].shs.shs[1];
shs[k].shs[2] = points[i].shs.shs[2];
for (int j = 1; j < SH_N; j++)
{
shs[k].shs[j * 3 + 0] = points[i].shs.shs[(j - 1) + 3];
shs[k].shs[j * 3 + 1] = points[i].shs.shs[(j - 1) + SH_N + 2];
shs[k].shs[j * 3 + 2] = points[i].shs.shs[(j - 1) + 2 * SH_N + 1];
}
}
return count;
}
void savePly(const char* filename,
const std::vector<Pos>& pos,
const std::vector<SHs<3>>& shs,
const std::vector<float>& opacities,
const std::vector<Scale>& scales,
const std::vector<Rot>& rot,
const sibr::Vector3f& minn,
const sibr::Vector3f& maxx)
{
// Read all Gaussians at once (AoS)
int count = 0;
for (int i = 0; i < pos.size(); i++)
{
if (pos[i].x() < minn.x() || pos[i].y() < minn.y() || pos[i].z() < minn.z() ||
pos[i].x() > maxx.x() || pos[i].y() > maxx.y() || pos[i].z() > maxx.z())
continue;
count++;
}
std::vector<RichPoint<3>> points(count);
// Output number of Gaussians contained
SIBR_LOG << "Saving " << count << " Gaussian splats" << std::endl;
std::ofstream outfile(filename, std::ios_base::binary);
outfile << "ply\nformat binary_little_endian 1.0\nelement vertex " << count << "\n";
std::string props1[] = { "x", "y", "z", "nx", "ny", "nz", "f_dc_0", "f_dc_1", "f_dc_2"};
std::string props2[] = { "opacity", "scale_0", "scale_1", "scale_2", "rot_0", "rot_1", "rot_2", "rot_3" };
for (auto s : props1)
outfile << "property float " << s << std::endl;
for (int i = 0; i < 45; i++)
outfile << "property float f_rest_" << i << std::endl;
for (auto s : props2)
outfile << "property float " << s << std::endl;
outfile << "end_header" << std::endl;
count = 0;
for (int i = 0; i < pos.size(); i++)
{
if (pos[i].x() < minn.x() || pos[i].y() < minn.y() || pos[i].z() < minn.z() ||
pos[i].x() > maxx.x() || pos[i].y() > maxx.y() || pos[i].z() > maxx.z())
continue;
points[count].pos = pos[i];
points[count].rot = rot[i];
// Exponentiate scale
for (int j = 0; j < 3; j++)
points[count].scale.scale[j] = log(scales[i].scale[j]);
// Activate alpha
points[count].opacity = inverse_sigmoid(opacities[i]);
points[count].shs.shs[0] = shs[i].shs[0];
points[count].shs.shs[1] = shs[i].shs[1];
points[count].shs.shs[2] = shs[i].shs[2];
for (int j = 1; j < 16; j++)
{
points[count].shs.shs[(j - 1) + 3] = shs[i].shs[j * 3 + 0];
points[count].shs.shs[(j - 1) + 18] = shs[i].shs[j * 3 + 1];
points[count].shs.shs[(j - 1) + 33] = shs[i].shs[j * 3 + 2];
}
count++;
}
outfile.write((char*)points.data(), sizeof(RichPoint<3>) * points.size());
}
namespace sibr
{
// A simple copy renderer class. Much like the original, but this one
// reads from a buffer instead of a texture and blits the result to
// a render target.
class BufferCopyRenderer
{
public:
BufferCopyRenderer()
{
_shader.init("CopyShader",
sibr::loadFile(sibr::getShadersDirectory("gaussian") + "/copy.vert"),
sibr::loadFile(sibr::getShadersDirectory("gaussian") + "/copy.frag"));
_flip.init(_shader, "flip");
_width.init(_shader, "width");
_height.init(_shader, "height");
}
void process(uint bufferID, IRenderTarget& dst, int width, int height, bool disableTest = true)
{
if (disableTest)
glDisable(GL_DEPTH_TEST);
else
glEnable(GL_DEPTH_TEST);
_shader.begin();
_flip.send();
_width.send();
_height.send();
dst.clear();
dst.bind();
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, bufferID);
sibr::RenderUtility::renderScreenQuad();
dst.unbind();
_shader.end();
}
/** \return option to flip the texture when copying. */
bool& flip() { return _flip.get(); }
int& width() { return _width.get(); }
int& height() { return _height.get(); }
private:
GLShader _shader;
GLuniform<bool> _flip = false; ///< Flip the texture when copying.
GLuniform<int> _width = 1000;
GLuniform<int> _height = 800;
};
}
std::function<char* (size_t N)> resizeFunctional(void** ptr, size_t& S) {
auto lambda = [ptr, &S](size_t N) {
if (N > S)
{
if (*ptr)
CUDA_SAFE_CALL(cudaFree(*ptr));
CUDA_SAFE_CALL(cudaMalloc(ptr, 2 * N));
S = 2 * N;
}
return reinterpret_cast<char*>(*ptr);
};
return lambda;
}
sibr::GaussianView::GaussianView(const sibr::BasicIBRScene::Ptr & ibrScene, uint render_w, uint render_h, const char* file, bool* messageRead, int sh_degree, bool white_bg, bool useInterop, int device) :
_scene(ibrScene),
_dontshow(messageRead),
_sh_degree(sh_degree),
sibr::ViewBase(render_w, render_h)
{
int num_devices;
CUDA_SAFE_CALL_ALWAYS(cudaGetDeviceCount(&num_devices));
_device = device;
if (device >= num_devices)
{
if (num_devices == 0)
SIBR_ERR << "No CUDA devices detected!";
else
SIBR_ERR << "Provided device index exceeds number of available CUDA devices!";
}
CUDA_SAFE_CALL_ALWAYS(cudaSetDevice(device));
cudaDeviceProp prop;
CUDA_SAFE_CALL_ALWAYS(cudaGetDeviceProperties(&prop, device));
if (prop.major < 7)
{
SIBR_ERR << "Sorry, need at least compute capability 7.0+!";
}
_pointbasedrenderer.reset(new PointBasedRenderer());
_copyRenderer = new BufferCopyRenderer();
_copyRenderer->flip() = true;
_copyRenderer->width() = render_w;
_copyRenderer->height() = render_h;
std::vector<uint> imgs_ulr;
const auto & cams = ibrScene->cameras()->inputCameras();
for(size_t cid = 0; cid < cams.size(); ++cid) {
if(cams[cid]->isActive()) {
imgs_ulr.push_back(uint(cid));
}
}
_scene->cameras()->debugFlagCameraAsUsed(imgs_ulr);
// Load the PLY data (AoS) to the GPU (SoA)
// std::vector<std::vector<Pos>> pos;
// std::vector<std::vector<Rot>> rot;
// std::vector<std::vector<Scale>> scale;
// std::vector<std::vector<float>> opacity;
// std::vector<std::vector<SHs<3>>> shs;
std::cout<< file <<std::endl;
std::vector<Pos> pos;
std::vector<Rot> rot;
std::vector<Scale> scale;
std::vector<float> opacity;
std::vector<SHs<3>> shs;
if (sh_degree == 0)
{
count = loadPly<0>(file, pos, shs, opacity, scale, rot, _scenemin, _scenemax);
}
else if (sh_degree == 1)
{
count = loadPly<1>(file, pos, shs, opacity, scale, rot, _scenemin, _scenemax);
}
else if (sh_degree == 2)
{
count = loadPly<2>(file, pos, shs, opacity, scale, rot, _scenemin, _scenemax);
}
else if (sh_degree == 3)
{
count = loadPly<3>(file, pos, shs, opacity, scale, rot, _scenemin, _scenemax);
}
_boxmin = _scenemin;
_boxmax = _scenemax;
int P = count;
// Allocate and fill the GPU data
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&pos_cuda, sizeof(Pos) * P));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(pos_cuda, pos.data(), sizeof(Pos) * P, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&rot_cuda, sizeof(Rot) * P));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(rot_cuda, rot.data(), sizeof(Rot) * P, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&shs_cuda, sizeof(SHs<3>) * P));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(shs_cuda, shs.data(), sizeof(SHs<3>) * P, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&opacity_cuda, sizeof(float) * P));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(opacity_cuda, opacity.data(), sizeof(float) * P, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&scale_cuda, sizeof(Scale) * P));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(scale_cuda, scale.data(), sizeof(Scale) * P, cudaMemcpyHostToDevice));
// Create space for view parameters
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&view_cuda, sizeof(sibr::Matrix4f)));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&proj_cuda, sizeof(sibr::Matrix4f)));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&cam_pos_cuda, 3 * sizeof(float)));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&background_cuda, 3 * sizeof(float)));
CUDA_SAFE_CALL_ALWAYS(cudaMalloc((void**)&rect_cuda, 2 * P * sizeof(int)));
float bg[3] = { white_bg ? 1.f : 0.f, white_bg ? 1.f : 0.f, white_bg ? 1.f : 0.f };
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(background_cuda, bg, 3 * sizeof(float), cudaMemcpyHostToDevice));
gData = new GaussianData(P,
(float*)pos.data(),
(float*)rot.data(),
(float*)scale.data(),
opacity.data(),
(float*)shs.data());
_gaussianRenderer = new GaussianSurfaceRenderer();
// Create GL buffer ready for CUDA/GL interop
glCreateBuffers(1, &imageBuffer);
glNamedBufferStorage(imageBuffer, render_w * render_h * 3 * sizeof(float), nullptr, GL_DYNAMIC_STORAGE_BIT);
if (useInterop)
{
if (cudaPeekAtLastError() != cudaSuccess)
{
SIBR_ERR << "A CUDA error occurred in setup:" << cudaGetErrorString(cudaGetLastError()) << ". Please rerun in Debug to find the exact line!";
}
cudaGraphicsGLRegisterBuffer(&imageBufferCuda, imageBuffer, cudaGraphicsRegisterFlagsWriteDiscard);
useInterop &= (cudaGetLastError() == cudaSuccess);
}
if (!useInterop)
{
fallback_bytes.resize(render_w * render_h * 3 * sizeof(float));
cudaMalloc(&fallbackBufferCuda, fallback_bytes.size());
_interop_failed = true;
}
geomBufferFunc = resizeFunctional(&geomPtr, allocdGeom);
binningBufferFunc = resizeFunctional(&binningPtr, allocdBinning);
imgBufferFunc = resizeFunctional(&imgPtr, allocdImg);
}
void sibr::GaussianView::setScene(const sibr::BasicIBRScene::Ptr & newScene)
{
_scene = newScene;
// Tell the scene we are a priori using all active cameras.
std::vector<uint> imgs_ulr;
const auto & cams = newScene->cameras()->inputCameras();
for (size_t cid = 0; cid < cams.size(); ++cid) {
if (cams[cid]->isActive()) {
imgs_ulr.push_back(uint(cid));
}
}
_scene->cameras()->debugFlagCameraAsUsed(imgs_ulr);
}
void sibr::GaussianView::onRenderIBR(sibr::IRenderTarget & dst, const sibr::Camera & eye)
{
if (currMode == "Ellipsoids")
{
_gaussianRenderer->process(count, *gData, eye, dst, 0.2f);
}
else if (currMode == "Initial Points")
{
_pointbasedrenderer->process(_scene->proxies()->proxy(), eye, dst);
}
else
{
// Convert view and projection to target coordinate system
auto view_mat = eye.view();
auto proj_mat = eye.viewproj();
view_mat.row(1) *= -1;
view_mat.row(2) *= -1;
proj_mat.row(1) *= -1;
// Compute additional view parameters
float tan_fovy = tan(eye.fovy() * 0.5f);
float tan_fovx = tan_fovy * eye.aspect();
// Copy frame-dependent data to GPU
CUDA_SAFE_CALL(cudaMemcpy(view_cuda, view_mat.data(), sizeof(sibr::Matrix4f), cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpy(proj_cuda, proj_mat.data(), sizeof(sibr::Matrix4f), cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpy(cam_pos_cuda, &eye.position(), sizeof(float) * 3, cudaMemcpyHostToDevice));
float* image_cuda = nullptr;
if (!_interop_failed)
{
// Map OpenGL buffer resource for use with CUDA
size_t bytes;
CUDA_SAFE_CALL(cudaGraphicsMapResources(1, &imageBufferCuda));
CUDA_SAFE_CALL(cudaGraphicsResourceGetMappedPointer((void**)&image_cuda, &bytes, imageBufferCuda));
}
else
{
image_cuda = fallbackBufferCuda;
}
// Rasterize
// int* rects = _fastCulling ? rect_cuda : nullptr;
int* rects = nullptr;
float* boxmin = _cropping ? (float*)&_boxmin : nullptr;
float* boxmax = _cropping ? (float*)&_boxmax : nullptr;
CudaRasterizer::Rasterizer::forward(
geomBufferFunc,
binningBufferFunc,
imgBufferFunc,
count, _sh_degree, 16,
background_cuda,
_resolution.x(), _resolution.y(),
pos_cuda,
shs_cuda,
nullptr,
opacity_cuda,
scale_cuda,
_scalingModifier,
rot_cuda,
nullptr,
view_cuda,
proj_cuda,
cam_pos_cuda,
tan_fovx,
tan_fovy,
false,
image_cuda,
nullptr,
rects,
boxmin,
boxmax
);
if (!_interop_failed)
{
// Unmap OpenGL resource for use with OpenGL
CUDA_SAFE_CALL(cudaGraphicsUnmapResources(1, &imageBufferCuda));
}
else
{
CUDA_SAFE_CALL(cudaMemcpy(fallback_bytes.data(), fallbackBufferCuda, fallback_bytes.size(), cudaMemcpyDeviceToHost));
glNamedBufferSubData(imageBuffer, 0, fallback_bytes.size(), fallback_bytes.data());
}
// Copy image contents to framebuffer
_copyRenderer->process(imageBuffer, dst, _resolution.x(), _resolution.y());
}
if (cudaPeekAtLastError() != cudaSuccess)
{
SIBR_ERR << "A CUDA error occurred during rendering:" << cudaGetErrorString(cudaGetLastError()) << ". Please rerun in Debug to find the exact line!";
}
}
void sibr::GaussianView::onUpdate(Input & input)
{
}
void sibr::GaussianView::onGUI()
{
// Generate and update UI elements
const std::string guiName = "3D Gaussians";
if (ImGui::Begin(guiName.c_str()))
{
if (ImGui::BeginCombo("Render Mode", currMode.c_str()))
{
if (ImGui::Selectable("Splats"))
currMode = "Splats";
if (ImGui::Selectable("Initial Points"))
currMode = "Initial Points";
if (ImGui::Selectable("Ellipsoids"))
currMode = "Ellipsoids";
ImGui::EndCombo();
}
}
if (currMode == "Splats")
{
ImGui::SliderFloat("Scaling Modifier", &_scalingModifier, 0.001f, 1.0f);
}
ImGui::Checkbox("Fast culling", &_fastCulling);
ImGui::Checkbox("Crop Box", &_cropping);
if (_cropping)
{
ImGui::SliderFloat("Box Min X", &_boxmin.x(), _scenemin.x(), _scenemax.x());
ImGui::SliderFloat("Box Min Y", &_boxmin.y(), _scenemin.y(), _scenemax.y());
ImGui::SliderFloat("Box Min Z", &_boxmin.z(), _scenemin.z(), _scenemax.z());
ImGui::SliderFloat("Box Max X", &_boxmax.x(), _scenemin.x(), _scenemax.x());
ImGui::SliderFloat("Box Max Y", &_boxmax.y(), _scenemin.y(), _scenemax.y());
ImGui::SliderFloat("Box Max Z", &_boxmax.z(), _scenemin.z(), _scenemax.z());
ImGui::InputText("File", _buff, 512);
if (ImGui::Button("Save"))
{
std::vector<Pos> pos(count);
std::vector<Rot> rot(count);
std::vector<float> opacity(count);
std::vector<SHs<3>> shs(count);
std::vector<Scale> scale(count);
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(pos.data(), pos_cuda, sizeof(Pos) * count, cudaMemcpyDeviceToHost));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(rot.data(), rot_cuda, sizeof(Rot) * count, cudaMemcpyDeviceToHost));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(opacity.data(), opacity_cuda, sizeof(float) * count, cudaMemcpyDeviceToHost));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(shs.data(), shs_cuda, sizeof(SHs<3>) * count, cudaMemcpyDeviceToHost));
CUDA_SAFE_CALL_ALWAYS(cudaMemcpy(scale.data(), scale_cuda, sizeof(Scale) * count, cudaMemcpyDeviceToHost));
savePly(_buff, pos, shs, opacity, scale, rot, _boxmin, _boxmax);
}
}
ImGui::End();
if(!*_dontshow && !accepted && _interop_failed)
ImGui::OpenPopup("Error Using Interop");
if (!*_dontshow && !accepted && _interop_failed && ImGui::BeginPopupModal("Error Using Interop", NULL, ImGuiWindowFlags_AlwaysAutoResize)) {
ImGui::SetItemDefaultFocus();
ImGui::SetWindowFontScale(2.0f);
ImGui::Text("This application tries to use CUDA/OpenGL interop.\n"\
" It did NOT work for your current configuration.\n"\
" For highest performance, OpenGL and CUDA must run on the same\n"\
" GPU on an OS that supports interop.You can try to pass a\n"\
" non-zero index via --device on a multi-GPU system, and/or try\n" \
" attaching the monitors to the main CUDA card.\n"\
" On a laptop with one integrated and one dedicated GPU, you can try\n"\
" to set the preferred GPU via your operating system.\n\n"\
" FALLING BACK TO SLOWER RENDERING WITH CPU ROUNDTRIP\n");
ImGui::Separator();
if (ImGui::Button(" OK ")) {
ImGui::CloseCurrentPopup();
accepted = true;
}
ImGui::SameLine();
ImGui::Checkbox("Don't show this message again", _dontshow);
ImGui::EndPopup();
}
}
sibr::GaussianView::~GaussianView()
{
// Cleanup
cudaFree(pos_cuda);
cudaFree(rot_cuda);
cudaFree(scale_cuda);
cudaFree(opacity_cuda);
cudaFree(shs_cuda);
cudaFree(view_cuda);
cudaFree(proj_cuda);
cudaFree(cam_pos_cuda);
cudaFree(background_cuda);
cudaFree(rect_cuda);
if (!_interop_failed)
{
cudaGraphicsUnregisterResource(imageBufferCuda);
}
else
{
cudaFree(fallbackBufferCuda);
}
glDeleteBuffers(1, &imageBuffer);
if (geomPtr)
cudaFree(geomPtr);
if (binningPtr)
cudaFree(binningPtr);
if (imgPtr)
cudaFree(imgPtr);
delete _copyRenderer;
}
|