Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,979 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# ----------------------------------------------------------------------------
# - TanksAndTemples Website Toolbox -
# - http://www.tanksandtemples.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2017
# Arno Knapitsch <arno.knapitsch@gmail.com >
# Jaesik Park <syncle@gmail.com>
# Qian-Yi Zhou <Qianyi.Zhou@gmail.com>
# Vladlen Koltun <vkoltun@gmail.com>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# ----------------------------------------------------------------------------
#
# This python script is for downloading dataset from www.tanksandtemples.org
# The dataset has a different license, please refer to
# https://tanksandtemples.org/license/
# this script requires Open3D python binding
# please follow the intructions in setup.py before running this script.
import numpy as np
import open3d as o3d
import os
import argparse
import torch
from config import scenes_tau_dict
from registration import (
trajectory_alignment,
registration_vol_ds,
registration_unif,
read_trajectory,
)
from help_func import auto_orient_and_center_poses
from trajectory_io import CameraPose
from evaluation import EvaluateHisto
from util import make_dir
from plot import plot_graph
def run_evaluation(dataset_dir, traj_path, ply_path, out_dir, view_crop):
scene = os.path.basename(os.path.normpath(dataset_dir))
if scene not in scenes_tau_dict:
print(dataset_dir, scene)
raise Exception("invalid dataset-dir, not in scenes_tau_dict")
print("")
print("===========================")
print("Evaluating %s" % scene)
print("===========================")
dTau = scenes_tau_dict[scene]
# put the crop-file, the GT file, the COLMAP SfM log file and
# the alignment of the according scene in a folder of
# the same scene name in the dataset_dir
colmap_ref_logfile = os.path.join(dataset_dir, scene + "_COLMAP_SfM.log")
# this is for groundtruth pointcloud, we can use it
alignment = os.path.join(dataset_dir, scene + "_trans.txt")
gt_filen = os.path.join(dataset_dir, scene + ".ply")
# this crop file is also w.r.t the groundtruth pointcloud, we can use it.
# Otherwise we have to crop the estimated pointcloud by ourself
cropfile = os.path.join(dataset_dir, scene + ".json")
# this is not so necessary
map_file = os.path.join(dataset_dir, scene + "_mapping_reference.txt")
if not os.path.isfile(map_file):
map_file = None
map_file = None
make_dir(out_dir)
# Load reconstruction and according GT
print(ply_path)
pcd = o3d.io.read_point_cloud(ply_path)
print(gt_filen)
gt_pcd = o3d.io.read_point_cloud(gt_filen)
gt_trans = np.loadtxt(alignment)
print(traj_path)
traj_to_register = []
if traj_path.endswith('.npy'):
ld = np.load(traj_path)
for i in range(len(ld)):
traj_to_register.append(CameraPose(meta=None, mat=ld[i]))
elif traj_path.endswith('.json'): # instant-npg or sdfstudio format
import json
with open(traj_path, encoding='UTF-8') as f:
meta = json.load(f)
poses_dict = {}
for i, frame in enumerate(meta['frames']):
filepath = frame['file_path']
new_i = int(filepath[13:18]) - 1
poses_dict[new_i] = np.array(frame['transform_matrix'])
poses = []
for i in range(len(poses_dict)):
poses.append(poses_dict[i])
poses = torch.from_numpy(np.array(poses).astype(np.float32))
poses, _ = auto_orient_and_center_poses(poses, method='up', center_poses=True)
scale_factor = 1.0 / float(torch.max(torch.abs(poses[:, :3, 3])))
poses[:, :3, 3] *= scale_factor
poses = poses.numpy()
for i in range(len(poses)):
traj_to_register.append(CameraPose(meta=None, mat=poses[i]))
else:
traj_to_register = read_trajectory(traj_path)
print(colmap_ref_logfile)
gt_traj_col = read_trajectory(colmap_ref_logfile)
trajectory_transform = trajectory_alignment(map_file, traj_to_register,
gt_traj_col, gt_trans, scene)
inv_transform = np.linalg.inv(trajectory_transform)
points = np.asarray(gt_pcd.points)
points = points @ inv_transform[:3, :3].T + inv_transform[:3, 3:].T
print(points.min(axis=0), points.max(axis=0))
print(np.concatenate([points.min(axis=0), points.max(axis=0)]).reshape(-1).tolist())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset-dir",
type=str,
required=True,
help="path to a dataset/scene directory containing X.json, X.ply, ...",
)
parser.add_argument(
"--traj-path",
type=str,
required=True,
help=
"path to trajectory file. See `convert_to_logfile.py` to create this file.",
)
parser.add_argument(
"--ply-path",
type=str,
required=True,
help="path to reconstruction ply file",
)
parser.add_argument(
"--out-dir",
type=str,
default="",
help=
"output directory, default: an evaluation directory is created in the directory of the ply file",
)
parser.add_argument(
"--view-crop",
type=int,
default=0,
help="whether view the crop pointcloud after aligned",
)
args = parser.parse_args()
args.view_crop = False # (args.view_crop > 0)
if args.out_dir.strip() == "":
args.out_dir = os.path.join(os.path.dirname(args.ply_path),
"evaluation")
run_evaluation(
dataset_dir=args.dataset_dir,
traj_path=args.traj_path,
ply_path=args.ply_path,
out_dir=args.out_dir,
view_crop=args.view_crop
)
|