File size: 7,361 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# ----------------------------------------------------------------------------
# -                   TanksAndTemples Website Toolbox                        -
# -                    http://www.tanksandtemples.org                        -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2017
# Arno Knapitsch <arno.knapitsch@gmail.com >
# Jaesik Park <syncle@gmail.com>
# Qian-Yi Zhou <Qianyi.Zhou@gmail.com>
# Vladlen Koltun <vkoltun@gmail.com>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# ----------------------------------------------------------------------------
#
# This python script is for downloading dataset from www.tanksandtemples.org
# The dataset has a different license, please refer to
# https://tanksandtemples.org/license/

from trajectory_io import read_trajectory, convert_trajectory_to_pointcloud
import copy
import numpy as np
import open3d as o3d


MAX_POINT_NUMBER = 4e6


def read_mapping(filename):
    mapping = []
    with open(filename, "r") as f:
        n_sampled_frames = int(f.readline())
        n_total_frames = int(f.readline())
        mapping = np.zeros(shape=(n_sampled_frames, 2))
        metastr = f.readline()
        for iter in range(n_sampled_frames):
            metadata = list(map(int, metastr.split()))
            mapping[iter, :] = metadata
            metastr = f.readline()
    return [n_sampled_frames, n_total_frames, mapping]


def gen_sparse_trajectory(mapping, f_trajectory):
    sparse_traj = []
    for m in mapping:
        sparse_traj.append(f_trajectory[int(m[1] - 1)])
    return sparse_traj


def trajectory_alignment(map_file, traj_to_register, gt_traj_col, gt_trans,
                         scene):
    traj_pcd_col = convert_trajectory_to_pointcloud(gt_traj_col)
    if gt_trans is not None:
        traj_pcd_col.transform(gt_trans)
    corres = o3d.utility.Vector2iVector(
        np.asarray(list(map(lambda x: [x, x], range(len(gt_traj_col))))))
    rr = o3d.pipelines.registration.RANSACConvergenceCriteria()
    rr.max_iteration = 100000
    # rr.max_validation = 100000
    # rr.confidence = 1.0

    # in this case a log file was used which contains
    # every movie frame (see tutorial for details)
    if len(traj_to_register) > 1600 and map_file is not None:
        n_sampled_frames, n_total_frames, mapping = read_mapping(map_file)
        traj_col2 = gen_sparse_trajectory(mapping, traj_to_register)
        traj_to_register_pcd = convert_trajectory_to_pointcloud(traj_col2)
    else:
        print("Estimated trajectory will leave as it is, no sparsity op is performed!")
        traj_to_register_pcd = convert_trajectory_to_pointcloud(
            traj_to_register)
    randomvar = 0.0
    if randomvar < 1e-5:
        traj_to_register_pcd_rand = traj_to_register_pcd
    else:
        nr_of_cam_pos = len(traj_to_register_pcd.points)
        rand_number_added = np.asanyarray(traj_to_register_pcd.points) * (
            np.random.rand(nr_of_cam_pos, 3) * randomvar - randomvar / 2.0 + 1)
        list_rand = list(rand_number_added)
        traj_to_register_pcd_rand = o3d.geometry.PointCloud()
        for elem in list_rand:
            traj_to_register_pcd_rand.points.append(elem)

    # Rough registration based on aligned colmap SfM data
    reg = o3d.pipelines.registration.registration_ransac_based_on_correspondence(
        traj_to_register_pcd_rand,
        traj_pcd_col,
        corres,
        0.2,
        o3d.pipelines.registration.TransformationEstimationPointToPoint(True),
        6,
        criteria = rr,
    )
    return reg.transformation


def crop_and_downsample(
        pcd,
        crop_volume,
        down_sample_method="voxel",
        voxel_size=0.01,
        trans=np.identity(4),
):
    pcd_copy = copy.deepcopy(pcd)
    pcd_copy.transform(trans)
    pcd_crop = crop_volume.crop_point_cloud(pcd_copy)
    if down_sample_method == "voxel":
        # return voxel_down_sample(pcd_crop, voxel_size)
        return pcd_crop.voxel_down_sample(voxel_size)
    elif down_sample_method == "uniform":
        n_points = len(pcd_crop.points)
        if n_points > MAX_POINT_NUMBER:
            ds_rate = int(round(n_points / float(MAX_POINT_NUMBER)))
            return pcd_crop.uniform_down_sample(ds_rate)
    return pcd_crop


def registration_unif(
    source,
    gt_target,
    init_trans,
    crop_volume,
    threshold,
    max_itr,
    max_size=4 * MAX_POINT_NUMBER,
    verbose=True,
):
    if verbose:
        print("[Registration] threshold: %f" % threshold)
        o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
    s = crop_and_downsample(source,
                            crop_volume,
                            down_sample_method="uniform",
                            trans=init_trans)
    t = crop_and_downsample(gt_target,
                            crop_volume,
                            down_sample_method="uniform")
    reg = o3d.pipelines.registration.registration_icp(
        s,
        t,
        threshold,
        np.identity(4),
        o3d.pipelines.registration.TransformationEstimationPointToPoint(True),
        o3d.pipelines.registration.ICPConvergenceCriteria(1e-6, max_iteration = max_itr),
    )
    reg.transformation = np.matmul(reg.transformation, init_trans)
    return reg


def registration_vol_ds(
    source,
    gt_target,
    init_trans,
    crop_volume,
    voxel_size,
    threshold,
    max_itr,
    verbose=True,
):
    if verbose:
        print("[Registration] voxel_size: %f, threshold: %f" %
              (voxel_size, threshold))
        o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
    s = crop_and_downsample(
        source,
        crop_volume,
        down_sample_method="voxel",
        voxel_size=voxel_size,
        trans=init_trans,
    )
    t = crop_and_downsample(
        gt_target,
        crop_volume,
        down_sample_method="voxel",
        voxel_size=voxel_size,
    )
    reg = o3d.pipelines.registration.registration_icp(
        s,
        t,
        threshold,
        np.identity(4),
        o3d.pipelines.registration.TransformationEstimationPointToPoint(True),
        o3d.pipelines.registration.ICPConvergenceCriteria(1e-6, max_iteration = max_itr),
    )
    reg.transformation = np.matmul(reg.transformation, init_trans)
    return reg