Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,361 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# ----------------------------------------------------------------------------
# - TanksAndTemples Website Toolbox -
# - http://www.tanksandtemples.org -
# ----------------------------------------------------------------------------
# The MIT License (MIT)
#
# Copyright (c) 2017
# Arno Knapitsch <arno.knapitsch@gmail.com >
# Jaesik Park <syncle@gmail.com>
# Qian-Yi Zhou <Qianyi.Zhou@gmail.com>
# Vladlen Koltun <vkoltun@gmail.com>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
# ----------------------------------------------------------------------------
#
# This python script is for downloading dataset from www.tanksandtemples.org
# The dataset has a different license, please refer to
# https://tanksandtemples.org/license/
from trajectory_io import read_trajectory, convert_trajectory_to_pointcloud
import copy
import numpy as np
import open3d as o3d
MAX_POINT_NUMBER = 4e6
def read_mapping(filename):
mapping = []
with open(filename, "r") as f:
n_sampled_frames = int(f.readline())
n_total_frames = int(f.readline())
mapping = np.zeros(shape=(n_sampled_frames, 2))
metastr = f.readline()
for iter in range(n_sampled_frames):
metadata = list(map(int, metastr.split()))
mapping[iter, :] = metadata
metastr = f.readline()
return [n_sampled_frames, n_total_frames, mapping]
def gen_sparse_trajectory(mapping, f_trajectory):
sparse_traj = []
for m in mapping:
sparse_traj.append(f_trajectory[int(m[1] - 1)])
return sparse_traj
def trajectory_alignment(map_file, traj_to_register, gt_traj_col, gt_trans,
scene):
traj_pcd_col = convert_trajectory_to_pointcloud(gt_traj_col)
if gt_trans is not None:
traj_pcd_col.transform(gt_trans)
corres = o3d.utility.Vector2iVector(
np.asarray(list(map(lambda x: [x, x], range(len(gt_traj_col))))))
rr = o3d.pipelines.registration.RANSACConvergenceCriteria()
rr.max_iteration = 100000
# rr.max_validation = 100000
# rr.confidence = 1.0
# in this case a log file was used which contains
# every movie frame (see tutorial for details)
if len(traj_to_register) > 1600 and map_file is not None:
n_sampled_frames, n_total_frames, mapping = read_mapping(map_file)
traj_col2 = gen_sparse_trajectory(mapping, traj_to_register)
traj_to_register_pcd = convert_trajectory_to_pointcloud(traj_col2)
else:
print("Estimated trajectory will leave as it is, no sparsity op is performed!")
traj_to_register_pcd = convert_trajectory_to_pointcloud(
traj_to_register)
randomvar = 0.0
if randomvar < 1e-5:
traj_to_register_pcd_rand = traj_to_register_pcd
else:
nr_of_cam_pos = len(traj_to_register_pcd.points)
rand_number_added = np.asanyarray(traj_to_register_pcd.points) * (
np.random.rand(nr_of_cam_pos, 3) * randomvar - randomvar / 2.0 + 1)
list_rand = list(rand_number_added)
traj_to_register_pcd_rand = o3d.geometry.PointCloud()
for elem in list_rand:
traj_to_register_pcd_rand.points.append(elem)
# Rough registration based on aligned colmap SfM data
reg = o3d.pipelines.registration.registration_ransac_based_on_correspondence(
traj_to_register_pcd_rand,
traj_pcd_col,
corres,
0.2,
o3d.pipelines.registration.TransformationEstimationPointToPoint(True),
6,
criteria = rr,
)
return reg.transformation
def crop_and_downsample(
pcd,
crop_volume,
down_sample_method="voxel",
voxel_size=0.01,
trans=np.identity(4),
):
pcd_copy = copy.deepcopy(pcd)
pcd_copy.transform(trans)
pcd_crop = crop_volume.crop_point_cloud(pcd_copy)
if down_sample_method == "voxel":
# return voxel_down_sample(pcd_crop, voxel_size)
return pcd_crop.voxel_down_sample(voxel_size)
elif down_sample_method == "uniform":
n_points = len(pcd_crop.points)
if n_points > MAX_POINT_NUMBER:
ds_rate = int(round(n_points / float(MAX_POINT_NUMBER)))
return pcd_crop.uniform_down_sample(ds_rate)
return pcd_crop
def registration_unif(
source,
gt_target,
init_trans,
crop_volume,
threshold,
max_itr,
max_size=4 * MAX_POINT_NUMBER,
verbose=True,
):
if verbose:
print("[Registration] threshold: %f" % threshold)
o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
s = crop_and_downsample(source,
crop_volume,
down_sample_method="uniform",
trans=init_trans)
t = crop_and_downsample(gt_target,
crop_volume,
down_sample_method="uniform")
reg = o3d.pipelines.registration.registration_icp(
s,
t,
threshold,
np.identity(4),
o3d.pipelines.registration.TransformationEstimationPointToPoint(True),
o3d.pipelines.registration.ICPConvergenceCriteria(1e-6, max_iteration = max_itr),
)
reg.transformation = np.matmul(reg.transformation, init_trans)
return reg
def registration_vol_ds(
source,
gt_target,
init_trans,
crop_volume,
voxel_size,
threshold,
max_itr,
verbose=True,
):
if verbose:
print("[Registration] voxel_size: %f, threshold: %f" %
(voxel_size, threshold))
o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Debug)
s = crop_and_downsample(
source,
crop_volume,
down_sample_method="voxel",
voxel_size=voxel_size,
trans=init_trans,
)
t = crop_and_downsample(
gt_target,
crop_volume,
down_sample_method="voxel",
voxel_size=voxel_size,
)
reg = o3d.pipelines.registration.registration_icp(
s,
t,
threshold,
np.identity(4),
o3d.pipelines.registration.TransformationEstimationPointToPoint(True),
o3d.pipelines.registration.ICPConvergenceCriteria(1e-6, max_iteration = max_itr),
)
reg.transformation = np.matmul(reg.transformation, init_trans)
return reg
|