File size: 36,689 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import torch
import numpy as np
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
from torch import nn
import os
from utils.system_utils import mkdir_p
from plyfile import PlyData, PlyElement
from utils.sh_utils import RGB2SH
from simple_knn._C import distCUDA2
from utils.graphics_utils import BasicPointCloud
from utils.general_utils import strip_symmetric, build_scaling_rotation
from scene.appearance_network import AppearanceNetwork
import trimesh
import math

class GaussianModel:
    # use mip-splatting filters
    def setup_functions(self):
        def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
            L = build_scaling_rotation(scaling_modifier * scaling, rotation)
            actual_covariance = L @ L.transpose(1, 2)
            symm = strip_symmetric(actual_covariance)
            return symm
        
        self.scaling_activation = torch.exp
        self.scaling_inverse_activation = torch.log

        self.covariance_activation = build_covariance_from_scaling_rotation

        self.opacity_activation = torch.sigmoid
        self.inverse_opacity_activation = inverse_sigmoid

        self.rotation_activation = torch.nn.functional.normalize


    def __init__(self, sh_degree : int):
        self.active_sh_degree = 0
        self.max_sh_degree = sh_degree  
        self._xyz = torch.empty(0)
        self._features_dc = torch.empty(0)
        self._features_rest = torch.empty(0)
        self._scaling = torch.empty(0)
        self._rotation = torch.empty(0)
        self._opacity = torch.empty(0)
        self.max_radii2D = torch.empty(0)
        self.xyz_gradient_accum = torch.empty(0)
        self.denom = torch.empty(0)
        self.optimizer = None
        self.percent_dense = 0
        self.spatial_lr_scale = 0
        self.setup_functions()
        # appearance network and appearance embedding
        # this module is adopted from GOF
        self.appearance_network = AppearanceNetwork(3+64, 3).cuda()
        
        std = 1e-4
        self._appearance_embeddings = nn.Parameter(torch.empty(2048, 64).cuda())
        self._appearance_embeddings.data.normal_(0, std)

    def capture(self):
        return (
            self.active_sh_degree,
            self._xyz,
            self._features_dc,
            self._features_rest,
            self._scaling,
            self._rotation,
            self._opacity,
            self.max_radii2D,
            self.xyz_gradient_accum,
            self.denom,
            self.optimizer.state_dict(),
            self.spatial_lr_scale,
            self.appearance_network.state_dict(),
            self._appearance_embeddings
        )
    
    def restore(self, model_args, training_args):
        (self.active_sh_degree, 
        self._xyz, 
        self._features_dc, 
        self._features_rest,
        self._scaling, 
        self._rotation, 
        self._opacity,
        self.max_radii2D, 
        xyz_gradient_accum, 
        denom,
        opt_dict, 
        self.spatial_lr_scale,
        app_dict,
        _appearance_embeddings) = model_args
        self.training_setup(training_args)
        self.xyz_gradient_accum = xyz_gradient_accum
        self.denom = denom
        self.optimizer.load_state_dict(opt_dict)
        self.appearance_network.load_state_dict(app_dict)
        self._appearance_embeddings = _appearance_embeddings


    @property
    def get_scaling(self):
        return self.scaling_activation(self._scaling)
    
    @property
    def get_scaling_with_3D_filter(self):
        scales = self.get_scaling
        
        scales = torch.square(scales) + torch.square(self.filter_3D)
        scales = torch.sqrt(scales)
        return scales
    
    @property
    def get_rotation(self):
        return self.rotation_activation(self._rotation)
    
    @property
    def get_xyz(self):
        return self._xyz
    
    @property
    def get_features(self):
        features_dc = self._features_dc
        features_rest = self._features_rest
        return torch.cat((features_dc, features_rest), dim=1)
    
    @property
    def get_opacity(self):
        return self.opacity_activation(self._opacity)
    
    @property
    def get_opacity_with_3D_filter(self):
        opacity = self.opacity_activation(self._opacity)
        # apply 3D filter
        scales = self.get_scaling
        
        scales_square = torch.square(scales)
        det1 = scales_square.prod(dim=1)
        
        scales_after_square = scales_square + torch.square(self.filter_3D) 
        det2 = scales_after_square.prod(dim=1) 
        coef = torch.sqrt(det1 / det2)
        return opacity * coef[..., None]
    
    @property
    def get_scaling_n_opacity_with_3D_filter(self):
        opacity = self.opacity_activation(self._opacity)
        scales = self.get_scaling
        scales_square = torch.square(scales)
        det1 = scales_square.prod(dim=1)
        scales_after_square = scales_square + torch.square(self.filter_3D) 
        det2 = scales_after_square.prod(dim=1) 
        coef = torch.sqrt(det1 / det2)
        scales = torch.sqrt(scales_after_square)
        return scales, opacity * coef[..., None]
    
    def get_apperance_embedding(self, idx):
        return self._appearance_embeddings[idx]
    
    def get_covariance(self, scaling_modifier = 1):
        return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)
    
    @torch.no_grad()
    def reset_3D_filter(self):
        xyz = self.get_xyz
        self.filter_3D = torch.zeros([xyz.shape[0], 1], device=xyz.device)
    
    @torch.no_grad()
    def compute_3D_filter(self, cameras):
        # print("Computing 3D filter")
        #TODO consider focal length and image width
        xyz = self.get_xyz
        distance = torch.ones((xyz.shape[0]), device=xyz.device) * 100000.0
        valid_points = torch.zeros((xyz.shape[0]), device=xyz.device, dtype=torch.bool)
        
        # we should use the focal length of the highest resolution camera
        focal_length = 0.
        for camera in cameras:
            # focal_x = float(camera.intrinsic[0,0])
            # focal_y = float(camera.intrinsic[1,1])
            W, H = camera.image_width, camera.image_height
            focal_x = W / (2 * math.tan(camera.FoVx / 2.))
            focal_y = H / (2 * math.tan(camera.FoVy / 2.))

            # transform points to camera space
            R = torch.tensor(camera.R, device=xyz.device, dtype=torch.float32)
            T = torch.tensor(camera.T, device=xyz.device, dtype=torch.float32)
             # R is stored transposed due to 'glm' in CUDA code so we don't neet transopse here
            xyz_cam = xyz @ R + T[None, :]
            
            
            # project to screen space
            valid_depth = xyz_cam[:, 2] > 0.2 # TODO remove hard coded value
            
            
            x, y, z = xyz_cam[:, 0], xyz_cam[:, 1], xyz_cam[:, 2]
            z = torch.clamp(z, min=0.001)
            
            x = x / z * focal_x + camera.image_width / 2.0
            y = y / z * focal_y + camera.image_height / 2.0
            
            # in_screen = torch.logical_and(torch.logical_and(x >= 0, x < camera.image_width), torch.logical_and(y >= 0, y < camera.image_height))
            
            # use similar tangent space filtering as in the paper
            in_screen = torch.logical_and(torch.logical_and(x >= -0.15 * camera.image_width, x <= camera.image_width * 1.15), torch.logical_and(y >= -0.15 * camera.image_height, y <= 1.15 * camera.image_height))
            
        
            valid = torch.logical_and(valid_depth, in_screen)
            
            # distance[valid] = torch.min(distance[valid], xyz_to_cam[valid])
            distance[valid] = torch.min(distance[valid], z[valid])
            valid_points = torch.logical_or(valid_points, valid)
            if focal_length < focal_x:
                focal_length = focal_x
        
        distance[~valid_points] = distance[valid_points].max()
        
        #TODO remove hard coded value
        #TODO box to gaussian transform
        filter_3D = distance / focal_length * (0.2 ** 0.5)
        self.filter_3D = filter_3D[..., None]


    @torch.no_grad()
    def compute_partial_3D_filter(self, cameras):
        # print("Computing 3D filter")
        #TODO consider focal length and image width
        xyz = self.get_xyz
        point_num = xyz.shape[0]
        current_filter = self.filter_3D.shape[0]
        addition_xyz_num = point_num - current_filter
        if addition_xyz_num == 0:
            return
        addition_xyz = xyz[current_filter:]
        distance = torch.ones((addition_xyz_num), device=xyz.device) * 100000.0
        valid_points = torch.zeros((addition_xyz_num), device=xyz.device, dtype=torch.bool)
        
        # we should use the focal length of the highest resolution camera
        focal_length = 0.
        for camera in cameras:
            # focal_x = float(camera.intrinsic[0,0])
            # focal_y = float(camera.intrinsic[1,1])
            W, H = camera.image_width, camera.image_height
            focal_x = W / (2 * math.tan(camera.FoVx / 2.))
            focal_y = H / (2 * math.tan(camera.FoVy / 2.))

            # transform points to camera space
            R = torch.tensor(camera.R, device=xyz.device, dtype=torch.float32)
            T = torch.tensor(camera.T, device=xyz.device, dtype=torch.float32)
             # R is stored transposed due to 'glm' in CUDA code so we don't neet transopse here
            xyz_cam = addition_xyz @ R + T[None, :]
            
            # project to screen space
            valid_depth = xyz_cam[:, 2] > 0.2 # TODO remove hard coded value
            
            
            x, y, z = xyz_cam[:, 0], xyz_cam[:, 1], xyz_cam[:, 2]
            z = torch.clamp(z, min=0.001)
            
            x = x / z * focal_x + camera.image_width / 2.0
            y = y / z * focal_y + camera.image_height / 2.0
            
            # in_screen = torch.logical_and(torch.logical_and(x >= 0, x < camera.image_width), torch.logical_and(y >= 0, y < camera.image_height))
            
            # use similar tangent space filtering as in the paper
            in_screen = torch.logical_and(torch.logical_and(x >= -0.15 * camera.image_width, x <= camera.image_width * 1.15), torch.logical_and(y >= -0.15 * camera.image_height, y <= 1.15 * camera.image_height))
            
        
            valid = torch.logical_and(valid_depth, in_screen)
            
            # distance[valid] = torch.min(distance[valid], xyz_to_cam[valid])
            distance[valid] = torch.min(distance[valid], z[valid])
            valid_points = torch.logical_or(valid_points, valid)
            if focal_length < focal_x:
                focal_length = focal_x
        
        distance[~valid_points] = distance[valid_points].max()
        
        #TODO remove hard coded value
        #TODO box to gaussian transform
        filter_3D = distance / focal_length * (0.2 ** 0.5)
        self.filter_3D = torch.cat([self.filter_3D,filter_3D[..., None]])


    def oneupSHdegree(self):
        if self.active_sh_degree < self.max_sh_degree:
            self.active_sh_degree += 1


    def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):
        self.spatial_lr_scale = spatial_lr_scale
        if type(pcd) is BasicPointCloud:
            fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
            fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
        else:
            fused_point_cloud = torch.tensor(np.asarray(pcd._xyz)).float().cuda()
            fused_color = RGB2SH(torch.tensor(np.asarray(pcd._rgb)).float().cuda())
        features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
        features[:, :3, 0 ] = fused_color
        features[:, 3:, 1:] = 0.0

        print("Number of points at initialisation : ", fused_point_cloud.shape[0])

        dist2 = torch.clamp_min(distCUDA2(fused_point_cloud.detach().clone().float().cuda()), 0.0000001)
        scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
        rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
        rots[:, 0] = 1

        opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))

        self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
        self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
        self._scaling = nn.Parameter(scales.requires_grad_(True))
        self._rotation = nn.Parameter(rots.requires_grad_(True))
        self._opacity = nn.Parameter(opacities.requires_grad_(True))
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")


    def training_setup(self, training_args):
        self.percent_dense = training_args.percent_dense
        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.xyz_gradient_accum_abs = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.xyz_gradient_accum_abs_max = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")

        l = [
            {'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"},
            {'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
            {'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
            {'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
            {'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"},
            {'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"},
            {'params': [self._appearance_embeddings], 'lr': training_args.appearance_embeddings_lr, "name": "appearance_embeddings"},
            {'params': self.appearance_network.parameters(), 'lr': training_args.appearance_network_lr, "name": "appearance_network"}
        ]

        self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
        self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
                                                    lr_final=training_args.position_lr_final*self.spatial_lr_scale,
                                                    lr_delay_mult=training_args.position_lr_delay_mult,
                                                    max_steps=training_args.position_lr_max_steps)

    def update_learning_rate(self, iteration):
        ''' Learning rate scheduling per step '''
        for param_group in self.optimizer.param_groups:
            if param_group["name"] == "xyz":
                lr = self.xyz_scheduler_args(iteration)
                param_group['lr'] = lr
                return lr

    def construct_list_of_attributes(self, exclude_filter=False):
        l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
        # All channels except the 3 DC
        for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
            l.append('f_dc_{}'.format(i))
        for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
            l.append('f_rest_{}'.format(i))
        l.append('opacity')
        for i in range(self._scaling.shape[1]):
            l.append('scale_{}'.format(i))
        for i in range(self._rotation.shape[1]):
            l.append('rot_{}'.format(i))
        if not exclude_filter:
            l.append('filter_3D')
        return l

    def save_ply(self, path):
        mkdir_p(os.path.dirname(path))

        xyz = self._xyz.detach().cpu().numpy()
        normals = np.zeros_like(xyz)
        f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        opacities = self._opacity.detach().cpu().numpy()
        scale = self._scaling.detach().cpu().numpy()
        rotation = self._rotation.detach().cpu().numpy()

        filter_3D = self.filter_3D.detach().cpu().numpy()
        dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]

        elements = np.empty(xyz.shape[0], dtype=dtype_full)
        attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation, filter_3D), axis=1)
        elements[:] = list(map(tuple, attributes))
        el = PlyElement.describe(elements, 'vertex')
        PlyData([el]).write(path)

    @torch.no_grad()
    def get_tetra_points(self):
        M = trimesh.creation.box()
        M.vertices *= 2
        
        rots = build_rotation(self._rotation)
        xyz = self.get_xyz
        scale = self.get_scaling_with_3D_filter * 3. # TODO test

        # filter points with small opacity for bicycle scene
        # opacity = self.get_opacity_with_3D_filter
        # mask = (opacity > 0.1).squeeze(-1)
        # xyz = xyz[mask]
        # scale = scale[mask]
        # rots = rots[mask]
        
        vertices = M.vertices.T    
        vertices = torch.from_numpy(vertices).float().cuda().unsqueeze(0).repeat(xyz.shape[0], 1, 1)
        # scale vertices first
        vertices = vertices * scale.unsqueeze(-1)
        vertices = torch.bmm(rots, vertices).squeeze(-1) + xyz.unsqueeze(-1)
        vertices = vertices.permute(0, 2, 1).reshape(-1, 3).contiguous()
        # concat center points
        vertices = torch.cat([vertices, xyz], dim=0)
        
        
        # scale is not a good solution but use it for now
        scale = scale.max(dim=-1, keepdim=True)[0]
        scale_corner = scale.repeat(1, 8).reshape(-1, 1)
        vertices_scale = torch.cat([scale_corner, scale], dim=0)
        return vertices, vertices_scale
    
    @torch.no_grad()
    def get_truc_tetra_points(self, cameras, depth_truc):
        xyz = self.get_xyz
        valid_points = torch.zeros((xyz.shape[0]), device=xyz.device, dtype=torch.bool)
        for camera in cameras:
            # focal_x = float(camera.intrinsic[0,0])
            # focal_y = float(camera.intrinsic[1,1])
            W, H = camera.image_width, camera.image_height
            focal_x = W / (2 * math.tan(camera.FoVx / 2.))
            focal_y = H / (2 * math.tan(camera.FoVy / 2.))

            # transform points to camera space
            R = torch.tensor(camera.R, device=xyz.device, dtype=torch.float32)
            T = torch.tensor(camera.T, device=xyz.device, dtype=torch.float32)
             # R is stored transposed due to 'glm' in CUDA code so we don't neet transopse here
            xyz_cam = xyz @ R + T[None, :]
            
            
            # project to screen space
            valid_depth = (xyz_cam[:, 2] > 0.2) * (xyz_cam[:, 2] < depth_truc)  # TODO remove hard coded value
            
            
            x, y, z = xyz_cam[:, 0], xyz_cam[:, 1], xyz_cam[:, 2]
            z = torch.clamp(z, min=0.001)
            
            x = x / z * focal_x + camera.image_width / 2.0
            y = y / z * focal_y + camera.image_height / 2.0
            
            # in_screen = torch.logical_and(torch.logical_and(x >= 0, x < camera.image_width), torch.logical_and(y >= 0, y < camera.image_height))
            
            # use similar tangent space filtering as in the paper
            in_screen = torch.logical_and(torch.logical_and(x >= -0.15 * camera.image_width, x <= camera.image_width * 1.15), torch.logical_and(y >= -0.15 * camera.image_height, y <= 1.15 * camera.image_height))
            
        
            valid = torch.logical_and(valid_depth, in_screen)

            valid_points = torch.logical_or(valid_points, valid)

        M = trimesh.creation.box()
        M.vertices *= 2
        
        rots = build_rotation(self._rotation)
        xyz = self.get_xyz
        scale = self.get_scaling_with_3D_filter * 3. # TODO test
        xyz = xyz[valid_depth]
        scale = scale[valid_depth]
        rots = rots[valid_depth]
        
        vertices = M.vertices.T    
        vertices = torch.from_numpy(vertices).float().cuda().unsqueeze(0).repeat(xyz.shape[0], 1, 1)
        # scale vertices first
        vertices = vertices * scale.unsqueeze(-1)
        vertices = torch.bmm(rots, vertices).squeeze(-1) + xyz.unsqueeze(-1)
        vertices = vertices.permute(0, 2, 1).reshape(-1, 3).contiguous()
        # concat center points
        vertices = torch.cat([vertices, xyz], dim=0)
        
        
        # scale is not a good solution but use it for now
        scale = scale.max(dim=-1, keepdim=True)[0]
        scale_corner = scale.repeat(1, 8).reshape(-1, 1)
        vertices_scale = torch.cat([scale_corner, scale], dim=0)
        return vertices, vertices_scale

    def reset_opacity(self):
        # reset opacity to by considering 3D filter
        current_opacity_with_filter = self.get_opacity_with_3D_filter
        opacities_new = torch.min(current_opacity_with_filter, torch.ones_like(current_opacity_with_filter)*0.01)
        
        # apply 3D filter
        scales = self.get_scaling
        
        scales_square = torch.square(scales)
        det1 = scales_square.prod(dim=1)
        
        scales_after_square = scales_square + torch.square(self.filter_3D) 
        det2 = scales_after_square.prod(dim=1) 
        coef = torch.sqrt(det1 / det2)
        opacities_new = opacities_new / coef[..., None]
        opacities_new = self.inverse_opacity_activation(opacities_new)

        optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
        self._opacity = optimizable_tensors["opacity"]

    def load_ply(self, path):
        plydata = PlyData.read(path)

        xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
                        np.asarray(plydata.elements[0]["y"]),
                        np.asarray(plydata.elements[0]["z"])),  axis=1)
        opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]

        filter_3D = np.asarray(plydata.elements[0]["filter_3D"])[..., np.newaxis]

        features_dc = np.zeros((xyz.shape[0], 3, 1))
        features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
        features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
        features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])

        extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
        extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
        assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
        features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
        for idx, attr_name in enumerate(extra_f_names):
            features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
        # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
        features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))

        scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
        scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
        scales = np.zeros((xyz.shape[0], len(scale_names)))
        for idx, attr_name in enumerate(scale_names):
            scales[:, idx] = np.asarray(plydata.elements[0][attr_name])

        rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
        rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
        rots = np.zeros((xyz.shape[0], len(rot_names)))
        for idx, attr_name in enumerate(rot_names):
            rots[:, idx] = np.asarray(plydata.elements[0][attr_name])

        self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
        self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
        self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
        self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
        self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))
        self.filter_3D = torch.tensor(filter_3D, dtype=torch.float, device="cuda")

        self.active_sh_degree = self.max_sh_degree

    def replace_tensor_to_optimizer(self, tensor, name):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            if group["name"] in ["appearance_embeddings", "appearance_network"]:
                continue
            if group["name"] == name:
                stored_state = self.optimizer.state.get(group['params'][0], None)
                stored_state["exp_avg"] = torch.zeros_like(tensor)
                stored_state["exp_avg_sq"] = torch.zeros_like(tensor)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def _prune_optimizer(self, mask):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            if group["name"] in ["appearance_embeddings", "appearance_network"]:
                continue
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:
                stored_state["exp_avg"] = stored_state["exp_avg"][mask]
                stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]
        return optimizable_tensors

    def prune_points(self, mask):
        valid_points_mask = ~mask
        optimizable_tensors = self._prune_optimizer(valid_points_mask)

        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]
        self.xyz_gradient_accum_abs = self.xyz_gradient_accum_abs[valid_points_mask]
        self.xyz_gradient_accum_abs_max = self.xyz_gradient_accum_abs_max[valid_points_mask]
        self.denom = self.denom[valid_points_mask]
        self.max_radii2D = self.max_radii2D[valid_points_mask]

    def cat_tensors_to_optimizer(self, tensors_dict):
        optimizable_tensors = {}
        for group in self.optimizer.param_groups:
            if group["name"] in ["appearance_embeddings", "appearance_network"]:
                continue
            assert len(group["params"]) == 1
            extension_tensor = tensors_dict[group["name"]]
            stored_state = self.optimizer.state.get(group['params'][0], None)
            if stored_state is not None:

                stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
                stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)

                del self.optimizer.state[group['params'][0]]
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                self.optimizer.state[group['params'][0]] = stored_state

                optimizable_tensors[group["name"]] = group["params"][0]
            else:
                group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
                optimizable_tensors[group["name"]] = group["params"][0]

        return optimizable_tensors

    def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation):
        d = {"xyz": new_xyz,
        "f_dc": new_features_dc,
        "f_rest": new_features_rest,
        "opacity": new_opacities,
        "scaling" : new_scaling,
        "rotation" : new_rotation}
        extension_num = new_xyz.shape[0]
        optimizable_tensors = self.cat_tensors_to_optimizer(d)
        self._xyz = optimizable_tensors["xyz"]
        self._features_dc = optimizable_tensors["f_dc"]
        self._features_rest = optimizable_tensors["f_rest"]
        self._opacity = optimizable_tensors["opacity"]
        self._scaling = optimizable_tensors["scaling"]
        self._rotation = optimizable_tensors["rotation"]

        self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.xyz_gradient_accum_abs = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.xyz_gradient_accum_abs_max = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
        self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
        # self.max_radii2D = torch.cat([self.max_radii2D,torch.zeros(extension_num, device="cuda")])

    def densify_and_split(self, grads, grad_threshold,  grads_abs, grad_abs_threshold, scene_extent, N=2):
        n_init_points = self.get_xyz.shape[0]
        # Extract points that satisfy the gradient condition
        padded_grad = torch.zeros((n_init_points), device="cuda")
        padded_grad[:grads.shape[0]] = grads.squeeze()
        selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
        padded_grad_abs = torch.zeros((n_init_points), device="cuda")
        padded_grad_abs[:grads_abs.shape[0]] = grads_abs.squeeze()
        selected_pts_mask_abs = torch.where(padded_grad_abs >= grad_abs_threshold, True, False)
        selected_pts_mask = torch.logical_or(selected_pts_mask, selected_pts_mask_abs)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)

        stds = self.get_scaling[selected_pts_mask].repeat(N,1)
        means =torch.zeros((stds.size(0), 3),device="cuda")
        samples = torch.normal(mean=means, std=stds)
        rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
        new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
        new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
        new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
        new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
        new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
        new_opacity = self._opacity[selected_pts_mask].repeat(N,1)
        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation)

        prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
        self.prune_points(prune_filter)

    def densify_and_clone(self, grads, grad_threshold,  grads_abs, grad_abs_threshold, scene_extent):
        # Extract points that satisfy the gradient condition
        selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
        selected_pts_mask_abs = torch.where(torch.norm(grads_abs, dim=-1) >= grad_abs_threshold, True, False)
        selected_pts_mask = torch.logical_or(selected_pts_mask, selected_pts_mask_abs)
        selected_pts_mask = torch.logical_and(selected_pts_mask,
                                              torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
        
        new_xyz = self._xyz[selected_pts_mask]
        # sample a new gaussian instead of fixing position
        stds = self.get_scaling[selected_pts_mask]
        means =torch.zeros((stds.size(0), 3),device="cuda")
        samples = torch.normal(mean=means, std=stds)
        rots = build_rotation(self._rotation[selected_pts_mask])
        new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask]
        
        new_features_dc = self._features_dc[selected_pts_mask]
        new_features_rest = self._features_rest[selected_pts_mask]
        new_opacities = self._opacity[selected_pts_mask]
        # new_opacities = 1-torch.sqrt(1-self.get_opacity[selected_pts_mask]*0.5)
        new_scaling = self._scaling[selected_pts_mask]
        new_rotation = self._rotation[selected_pts_mask]
        
        self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation)


    # use the same densification strategy as GOF https://github.com/autonomousvision/gaussian-opacity-fields
    def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
        grads = self.xyz_gradient_accum / self.denom
        grads[grads.isnan()] = 0.0

        grads_abs = self.xyz_gradient_accum_abs / self.denom
        grads_abs[grads_abs.isnan()] = 0.0
        ratio = (torch.norm(grads, dim=-1) >= max_grad).float().mean()
        Q = torch.quantile(grads_abs.reshape(-1), 1 - ratio)
        
        before = self._xyz.shape[0]
        self.densify_and_clone(grads, max_grad, grads_abs, Q, extent)
        clone = self._xyz.shape[0]

        self.densify_and_split(grads, max_grad, grads_abs, Q, extent)
        split = self._xyz.shape[0]

        prune_mask = (self.get_opacity < min_opacity).squeeze()
        if max_screen_size:
            big_points_vs = self.max_radii2D > max_screen_size
            big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent
            prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
        self.prune_points(prune_mask)
        prune = self._xyz.shape[0]
        torch.cuda.empty_cache()
        return clone - before, split - clone, split - prune

    def add_densification_stats(self, viewspace_point_tensor, update_filter):
        self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True)
        self.xyz_gradient_accum_abs[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,2:], dim=-1, keepdim=True)
        self.xyz_gradient_accum_abs_max[update_filter] = torch.max(self.xyz_gradient_accum_abs_max[update_filter], torch.norm(viewspace_point_tensor.grad[update_filter,2:], dim=-1, keepdim=True))
        self.denom[update_filter] += 1