Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,694 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from utils.graphics_utils import point_double_to_normal, depth_double_to_normal
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
from scene.cameras import Camera
import matplotlib.pyplot as plt
from utils.vis_utils import apply_depth_colormap
# function L1_loss_appearance is fork from GOF https://github.com/autonomousvision/gaussian-opacity-fields/blob/main/train.py
def L1_loss_appearance(image, gt_image, gaussians, view_idx, return_transformed_image=False):
appearance_embedding = gaussians.get_apperance_embedding(view_idx)
# center crop the image
origH, origW = image.shape[1:]
H = origH // 32 * 32
W = origW // 32 * 32
left = origW // 2 - W // 2
top = origH // 2 - H // 2
crop_image = image[:, top:top+H, left:left+W]
crop_gt_image = gt_image[:, top:top+H, left:left+W]
# down sample the image
crop_image_down = torch.nn.functional.interpolate(crop_image[None], size=(H//32, W//32), mode="bilinear", align_corners=True)[0]
crop_image_down = torch.cat([crop_image_down, appearance_embedding[None].repeat(H//32, W//32, 1).permute(2, 0, 1)], dim=0)[None]
mapping_image = gaussians.appearance_network(crop_image_down)
transformed_image = mapping_image * crop_image
if not return_transformed_image:
return l1_loss(transformed_image, crop_gt_image)
else:
transformed_image = torch.nn.functional.interpolate(transformed_image, size=(origH, origW), mode="bilinear", align_corners=True)[0]
return transformed_image
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
kernel_size = dataset.kernel_size
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
trainCameras = scene.getTrainCameras().copy()
if dataset.disable_filter3D:
gaussians.reset_3D_filter()
else:
gaussians.compute_3D_filter(cameras=trainCameras)
viewpoint_stack = None
ema_loss_for_log, ema_depth_loss_for_log, ema_mask_loss_for_log, ema_normal_loss_for_log = 0.0, 0.0, 0.0, 0.0
require_depth = not dataset.use_coord_map
require_coord = dataset.use_coord_map
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, kernel_size, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam: Camera = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
reg_kick_on = iteration >= opt.regularization_from_iter
render_pkg = render(viewpoint_cam, gaussians, pipe, background, kernel_size, require_coord = require_coord and reg_kick_on, require_depth = require_depth and reg_kick_on)
rendered_image: torch.Tensor
rendered_image, viewspace_point_tensor, visibility_filter, radii = (
render_pkg["render"],
render_pkg["viewspace_points"],
render_pkg["visibility_filter"],
render_pkg["radii"])
gt_image = viewpoint_cam.original_image.cuda()
if dataset.use_decoupled_appearance:
Ll1_render = L1_loss_appearance(rendered_image, gt_image, gaussians, viewpoint_cam.uid)
else:
Ll1_render = l1_loss(rendered_image, gt_image)
if reg_kick_on:
lambda_depth_normal = opt.lambda_depth_normal
if require_depth:
rendered_expected_depth: torch.Tensor = render_pkg["expected_depth"]
rendered_median_depth: torch.Tensor = render_pkg["median_depth"]
rendered_normal: torch.Tensor = render_pkg["normal"]
depth_middepth_normal = depth_double_to_normal(viewpoint_cam, rendered_expected_depth, rendered_median_depth)
else:
rendered_expected_coord: torch.Tensor = render_pkg["expected_coord"]
rendered_median_coord: torch.Tensor = render_pkg["median_coord"]
rendered_normal: torch.Tensor = render_pkg["normal"]
depth_middepth_normal = point_double_to_normal(viewpoint_cam, rendered_expected_coord, rendered_median_coord)
depth_ratio = 0.6
normal_error_map = (1 - (rendered_normal.unsqueeze(0) * depth_middepth_normal).sum(dim=1))
depth_normal_loss = (1-depth_ratio) * normal_error_map[0].mean() + depth_ratio * normal_error_map[1].mean()
else:
lambda_depth_normal = 0
depth_normal_loss = torch.tensor([0],dtype=torch.float32,device="cuda")
rgb_loss = (1.0 - opt.lambda_dssim) * Ll1_render + opt.lambda_dssim * (1.0 - ssim(rendered_image, gt_image.unsqueeze(0)))
loss = rgb_loss + depth_normal_loss * lambda_depth_normal
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
ema_normal_loss_for_log = 0.4 * depth_normal_loss.item() + 0.6 * ema_normal_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{4}f}", "loss_normal": f"{ema_normal_loss_for_log:.{4}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1_render, loss, depth_normal_loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background, kernel_size))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.05, scene.cameras_extent, size_threshold)
if dataset.disable_filter3D:
gaussians.reset_3D_filter()
else:
gaussians.compute_3D_filter(cameras=trainCameras)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
if iteration % 100 == 0 and iteration > opt.densify_until_iter and not dataset.disable_filter3D:
if iteration < opt.iterations - 100:
# don't update in the end of training
gaussians.compute_3D_filter(cameras=trainCameras)
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, normal_loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/normal_loss', normal_loss.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
render_result = renderFunc(viewpoint, scene.gaussians, *renderArgs)
image = torch.clamp(render_result["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.cuda(), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if config["name"] == "test":
with open(scene.model_path + "/chkpnt" + str(iteration) + ".txt", "w") as file_object:
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test), file=file_object)
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[15000])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
# network_gui.init(args.ip, args.port)
# torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(dataset=lp.extract(args),
opt=op.extract(args),
pipe=pp.extract(args),
testing_iterations=args.test_iterations,
saving_iterations=args.save_iterations,
checkpoint_iterations=args.checkpoint_iterations,
checkpoint=args.start_checkpoint,
debug_from=args.debug_from)
# All done
print("\nTraining complete.")
|