File size: 7,209 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import torch
import sys
from datetime import datetime
import numpy as np
import random
import struct
import os

def inverse_sigmoid(x):
    return torch.log(x/(1-x))

def PILtoTorch(pil_image, resolution):
    resized_image_PIL = pil_image.resize(resolution)
    resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0
    if len(resized_image.shape) == 3:
        return resized_image.permute(2, 0, 1)
    else:
        return resized_image.unsqueeze(dim=-1).permute(2, 0, 1)

def get_expon_lr_func(
    lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000
):
    """
    Copied from Plenoxels

    Continuous learning rate decay function. Adapted from JaxNeRF
    The returned rate is lr_init when step=0 and lr_final when step=max_steps, and
    is log-linearly interpolated elsewhere (equivalent to exponential decay).
    If lr_delay_steps>0 then the learning rate will be scaled by some smooth
    function of lr_delay_mult, such that the initial learning rate is
    lr_init*lr_delay_mult at the beginning of optimization but will be eased back
    to the normal learning rate when steps>lr_delay_steps.
    :param conf: config subtree 'lr' or similar
    :param max_steps: int, the number of steps during optimization.
    :return HoF which takes step as input
    """

    def helper(step):
        if step < 0 or (lr_init == 0.0 and lr_final == 0.0):
            # Disable this parameter
            return 0.0
        if lr_delay_steps > 0:
            # A kind of reverse cosine decay.
            delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin(
                0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1)
            )
        else:
            delay_rate = 1.0
        t = np.clip(step / max_steps, 0, 1)
        log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t)
        return delay_rate * log_lerp

    return helper

def strip_lowerdiag(L):
    uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda")

    uncertainty[:, 0] = L[:, 0, 0]
    uncertainty[:, 1] = L[:, 0, 1]
    uncertainty[:, 2] = L[:, 0, 2]
    uncertainty[:, 3] = L[:, 1, 1]
    uncertainty[:, 4] = L[:, 1, 2]
    uncertainty[:, 5] = L[:, 2, 2]
    return uncertainty

def strip_symmetric(sym):
    return strip_lowerdiag(sym)

def build_rotation(r):
    norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3])

    q = r / norm[:, None]

    R = torch.zeros((q.size(0), 3, 3), device='cuda')

    r = q[:, 0]
    x = q[:, 1]
    y = q[:, 2]
    z = q[:, 3]

    R[:, 0, 0] = 1 - 2 * (y*y + z*z)
    R[:, 0, 1] = 2 * (x*y - r*z)
    R[:, 0, 2] = 2 * (x*z + r*y)
    R[:, 1, 0] = 2 * (x*y + r*z)
    R[:, 1, 1] = 1 - 2 * (x*x + z*z)
    R[:, 1, 2] = 2 * (y*z - r*x)
    R[:, 2, 0] = 2 * (x*z - r*y)
    R[:, 2, 1] = 2 * (y*z + r*x)
    R[:, 2, 2] = 1 - 2 * (x*x + y*y)
    return R

def build_scaling_rotation(s, r):
    L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda")
    R = build_rotation(r)

    L[:,0,0] = s[:,0]
    L[:,1,1] = s[:,1]
    L[:,2,2] = s[:,2]

    L = R @ L
    return L

def safe_state(silent):
    old_f = sys.stdout
    class F:
        def __init__(self, silent):
            self.silent = silent

        def write(self, x):
            if not self.silent:
                if x.endswith("\n"):
                    old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S")))))
                else:
                    old_f.write(x)

        def flush(self):
            old_f.flush()

    sys.stdout = F(silent)

    random.seed(0)
    np.random.seed(0)
    torch.manual_seed(0)
    torch.cuda.set_device(torch.device("cuda:0"))

def readNormalDmb(file_path):
    try:
        with open(file_path, 'rb') as inimage:
            type = np.fromfile(inimage, dtype=np.int32, count=1)[0]
            h = np.fromfile(inimage, dtype=np.int32, count=1)[0]
            w = np.fromfile(inimage, dtype=np.int32, count=1)[0]
            nb = np.fromfile(inimage, dtype=np.int32, count=1)[0]

            if type != 1:
                print("Error: Invalid file type")
                return -1

            dataSize = h * w * nb

            normal = np.zeros((h, w, 3), dtype=np.float32)
            normal_data = np.fromfile(inimage, dtype=np.float32, count=dataSize)
            normal_data = normal_data.reshape((h, w, nb))
            normal[:, :, :] = normal_data[:, :, :3]

            return normal

    except IOError:
        print("Error opening file", file_path)
        return -1



def readDepthDmb(file_path):
    inimage = open(file_path, "rb")
    if not inimage:
        print("Error opening file", file_path)
        return -1

    type = -1

    type = struct.unpack("i", inimage.read(4))[0]
    h = struct.unpack("i", inimage.read(4))[0]
    w = struct.unpack("i", inimage.read(4))[0]
    nb = struct.unpack("i", inimage.read(4))[0]

    if type != 1:
        inimage.close()
        return -1

    dataSize = h * w * nb

    depth = np.zeros((h, w), dtype=np.float32)
    depth_data = np.frombuffer(inimage.read(dataSize * 4), dtype=np.float32)
    depth_data = depth_data.reshape((h, w))
    np.copyto(depth, depth_data)

    inimage.close()
    return depth

def read_propagted_depth(path):    
    cost = readDepthDmb(os.path.join(path, 'costs.dmb'))
    cost[cost==np.nan] = 2
    cost[cost < 0] = 2
    # mask = cost > 0.5

    depth = readDepthDmb(os.path.join(path, 'depths.dmb'))
    # depth[mask] = 300
    depth[np.isnan(depth)] = 300
    depth[depth < 0] = 300
    depth[depth > 300] = 300
    
    normal = readNormalDmb(os.path.join(path, 'normals.dmb'))

    return depth, cost, normal

def load_pairs_relation(path):
    pairs_relation = []
    num = 0
    with open(path, 'r') as file:
        num_images = int(file.readline())
        for i in range(num_images):

            ref_image_id = int(file.readline())
            if i != ref_image_id:
                print(ref_image_id)
                print(i)

            src_images_infos = file.readline().split()
            num_src_images = int(src_images_infos[0])
            src_images_infos = src_images_infos[1:]
            
            pairs = []
            #only fetch the first 4 src images
            for j in range(num_src_images):
                id, score = int(src_images_infos[2*j]), int(src_images_infos[2*j+1])
                #the idx needs to align to the training images
                if score <= 0.0 or id % 8 == 0:
                    continue
                id = (id // 8) * 7 + (id % 8) - 1
                pairs.append(id)
                
                if len(pairs) > 3:
                    break
                
            if ref_image_id % 8 != 0:
                #only load the training images
                pairs_relation.append(pairs)
            else:
                num = num + 1
            
    return pairs_relation