File size: 7,702 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  george.drettakis@inria.fr
#

import torch
import math
import numpy as np
from typing import NamedTuple
import cv2
import os

class BasicPointCloud(NamedTuple):
    points : np.array
    colors : np.array
    normals : np.array

def geom_transform_points(points, transf_matrix):
    P, _ = points.shape
    ones = torch.ones(P, 1, dtype=points.dtype, device=points.device)
    points_hom = torch.cat([points, ones], dim=1)
    points_out = torch.matmul(points_hom, transf_matrix.unsqueeze(0))

    denom = points_out[..., 3:] + 0.0000001
    return (points_out[..., :3] / denom).squeeze(dim=0)

def getWorld2View(R, t):
    Rt = np.zeros((4, 4))
    Rt[:3, :3] = R.transpose()
    Rt[:3, 3] = t
    Rt[3, 3] = 1.0
    return np.float32(Rt)

def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0):
    """ get world 2 camera matrix

    Args:
        R (_type_): c2w rotation
        t (_type_): w2c camera center
        translate (_type_, optional): _description_. Defaults to np.array([.0, .0, .0]).
        scale (float, optional): _description_. Defaults to 1.0.

    Returns:
        _type_: _description_
    """
    # compose w2c matrix
    Rt = np.zeros((4, 4))
    Rt[:3, :3] = R.transpose()
    Rt[:3, 3] = t
    Rt[3, 3] = 1.0

    # invert to get c2w
    C2W = np.linalg.inv(Rt)
    cam_center = C2W[:3, 3]
    cam_center = (cam_center + translate) * scale
    C2W[:3, 3] = cam_center
    # get the final w2c matrix
    Rt = np.linalg.inv(C2W)
    return np.float32(Rt)

def getProjectionMatrix(znear, zfar, fovX, fovY):
    tanHalfFovY = math.tan((fovY / 2))
    tanHalfFovX = math.tan((fovX / 2))

    top = tanHalfFovY * znear
    bottom = -top
    right = tanHalfFovX * znear
    left = -right

    P = torch.zeros(4, 4)

    z_sign = 1.0

    P[0, 0] = 2.0 * znear / (right - left)
    P[1, 1] = 2.0 * znear / (top - bottom)
    P[0, 2] = (right + left) / (right - left)
    P[1, 2] = (top + bottom) / (top - bottom)
    P[3, 2] = z_sign
    P[2, 2] = z_sign * zfar / (zfar - znear)
    P[2, 3] = -(zfar * znear) / (zfar - znear)
    return P

def fov2focal(fov, pixels):
    return pixels / (2 * math.tan(fov / 2))

def focal2fov(focal, pixels):
    return 2*math.atan(pixels/(2*focal))


# the following functions depths_double_to_points and depth_double_to_normal are adopted from https://github.com/hugoycj/2dgs-gaustudio/blob/main/utils/graphics_utils.py
def depths_double_to_points(view, depthmap1, depthmap2):
    W, H = view.image_width, view.image_height
    fx = W / (2 * math.tan(view.FoVx / 2.))
    fy = H / (2 * math.tan(view.FoVy / 2.))
    intrins_inv = torch.tensor(
        [[1/fx, 0.,-W/(2 * fx)],
        [0., 1/fy, -H/(2 * fy),],
        [0., 0., 1.0]]
    ).float().cuda()
    grid_x, grid_y = torch.meshgrid(torch.arange(W)+0.5, torch.arange(H)+0.5, indexing='xy')
    points = torch.stack([grid_x, grid_y, torch.ones_like(grid_x)], dim=0).reshape(3, -1).float().cuda()
    rays_d = intrins_inv @ points
    points1 = depthmap1.reshape(1,-1) * rays_d
    points2 = depthmap2.reshape(1,-1) * rays_d
    return points1.reshape(3,H,W), points2.reshape(3,H,W)



def point_double_to_normal(view, points1, points2):
    points = torch.stack([points1, points2],dim=0)
    output = torch.zeros_like(points)
    dx = points[...,2:, 1:-1] - points[...,:-2, 1:-1]
    dy = points[...,1:-1, 2:] - points[...,1:-1, :-2]
    normal_map = torch.nn.functional.normalize(torch.cross(dx, dy, dim=1), dim=1)
    output[...,1:-1, 1:-1] = normal_map
    return output

def depth_double_to_normal(view, depth1, depth2):
    points1, points2 = depths_double_to_points(view, depth1, depth2)
    return point_double_to_normal(view, points1, points2)

def bilinear_sampler(img, coords, mask=False):
    """ Wrapper for grid_sample, uses pixel coordinates """
    H, W = img.shape[-2:]
    xgrid, ygrid = coords.split([1,1], dim=-1)
    xgrid = 2*xgrid/(W-1) - 1
    ygrid = 2*ygrid/(H-1) - 1

    grid = torch.cat([xgrid, ygrid], dim=-1)
    img = torch.nn.functional.grid_sample(img, grid, align_corners=True)

    if mask:
        mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
        return img, mask.float()

    return img


# project the reference point cloud into the source view, then project back
#extrinsics here refers c2w
def reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src):
    width, height = depth_ref.shape[1], depth_ref.shape[0]
    ## step1. project reference pixels to the source view
    # reference view x, y
    x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
    x_ref, y_ref = x_ref.reshape([-1]), y_ref.reshape([-1])
    # reference 3D space
    xyz_ref = np.matmul(np.linalg.inv(intrinsics_ref),
                        np.vstack((x_ref, y_ref, np.ones_like(x_ref))) * depth_ref.reshape([-1]))
    # source 3D space
    xyz_src = np.matmul(np.matmul(extrinsics_src, np.linalg.inv(extrinsics_ref)),
                        np.vstack((xyz_ref, np.ones_like(x_ref))))[:3]
    # source view x, y
    K_xyz_src = np.matmul(intrinsics_src, xyz_src)
    xy_src = K_xyz_src[:2] / K_xyz_src[2:3]

    ## step2. reproject the source view points with source view depth estimation
    # find the depth estimation of the source view
    x_src = xy_src[0].reshape([height, width]).astype(np.float32)
    y_src = xy_src[1].reshape([height, width]).astype(np.float32)
    sampled_depth_src = cv2.remap(depth_src, x_src, y_src, interpolation=cv2.INTER_LINEAR)
    # mask = sampled_depth_src > 0

    # source 3D space
    # NOTE that we should use sampled source-view depth_here to project back
    xyz_src = np.matmul(np.linalg.inv(intrinsics_src),
                        np.vstack((xy_src, np.ones_like(x_ref))) * sampled_depth_src.reshape([-1]))
    # reference 3D space
    xyz_reprojected = np.matmul(np.matmul(extrinsics_ref, np.linalg.inv(extrinsics_src)),
                                np.vstack((xyz_src, np.ones_like(x_ref))))[:3]
    # source view x, y, depth
    depth_reprojected = xyz_reprojected[2].reshape([height, width]).astype(np.float32)
    K_xyz_reprojected = np.matmul(intrinsics_ref, xyz_reprojected)
    xy_reprojected = K_xyz_reprojected[:2] / K_xyz_reprojected[2:3]
    x_reprojected = xy_reprojected[0].reshape([height, width]).astype(np.float32)
    y_reprojected = xy_reprojected[1].reshape([height, width]).astype(np.float32)

    return depth_reprojected, x_reprojected, y_reprojected, x_src, y_src



def check_geometric_consistency(depth_ref, intrinsics_ref, extrinsics_ref, depth_src, intrinsics_src, extrinsics_src, thre1=0.5, thre2=0.01):
    width, height = depth_ref.shape[1], depth_ref.shape[0]
    x_ref, y_ref = np.meshgrid(np.arange(0, width), np.arange(0, height))
    depth_reprojected, x2d_reprojected, y2d_reprojected, x2d_src, y2d_src = reproject_with_depth(depth_ref, intrinsics_ref, extrinsics_ref,
                                                     depth_src, intrinsics_src, extrinsics_src)
    # check |p_reproj-p_1| < 1
    dist = np.sqrt((x2d_reprojected - x_ref) ** 2 + (y2d_reprojected - y_ref) ** 2)

    # check |d_reproj-d_1| / d_1 < 0.01
    depth_diff = np.abs(depth_reprojected - depth_ref)
    relative_depth_diff = depth_diff / depth_ref

    mask = np.logical_and(dist < thre1, relative_depth_diff < thre2)
    # mask = dist < 0.2
    depth_reprojected[~mask] = 0

    return mask, depth_reprojected, x2d_src, y2d_src, relative_depth_diff