Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,121 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
#
# Copyright (C) 2024, ShanghaiTech
# SVIP research group, https://github.com/svip-lab
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact huangbb@shanghaitech.edu.cn
#
#copy from https://github.com/hbb1/2d-gaussian-splatting/blob/main/utils/mesh_utils.py
import torch
import numpy as np
import os
import math
from tqdm import tqdm
from functools import partial
import open3d as o3d
import trimesh
from utils.depth_utils import depth_to_normal
def post_process_mesh(mesh, cluster_to_keep=1000):
"""
Post-process a mesh to filter out floaters and disconnected parts
"""
import copy
print("post processing the mesh to have {} clusterscluster_to_kep".format(cluster_to_keep))
mesh_0 = copy.deepcopy(mesh)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
triangle_clusters, cluster_n_triangles, cluster_area = (mesh_0.cluster_connected_triangles())
triangle_clusters = np.asarray(triangle_clusters)
cluster_n_triangles = np.asarray(cluster_n_triangles)
cluster_area = np.asarray(cluster_area)
n_cluster = np.sort(cluster_n_triangles.copy())[-cluster_to_keep]
n_cluster = max(n_cluster, 50) # filter meshes smaller than 50
triangles_to_remove = cluster_n_triangles[triangle_clusters] < n_cluster
mesh_0.remove_triangles_by_mask(triangles_to_remove)
mesh_0.remove_unreferenced_vertices()
mesh_0.remove_degenerate_triangles()
print("num vertices raw {}".format(len(mesh.vertices)))
print("num vertices post {}".format(len(mesh_0.vertices)))
return mesh_0
def to_cam_open3d(viewpoint_stack):
camera_traj = []
for i, viewpoint_cam in enumerate(viewpoint_stack):
intrinsic=o3d.camera.PinholeCameraIntrinsic(width=viewpoint_cam.image_width,
height=viewpoint_cam.image_height,
cx = viewpoint_cam.image_width/2,
cy = viewpoint_cam.image_height/2,
fx = viewpoint_cam.image_width / (2 * math.tan(viewpoint_cam.FoVx / 2.)),
fy = viewpoint_cam.image_height / (2 * math.tan(viewpoint_cam.FoVy / 2.)))
extrinsic=np.asarray((viewpoint_cam.world_view_transform.T).cpu().numpy())
camera = o3d.camera.PinholeCameraParameters()
camera.extrinsic = extrinsic
camera.intrinsic = intrinsic
camera_traj.append(camera)
return camera_traj
class GaussianExtractor(object):
def __init__(self, gaussians, render, pipe, bg_color=None):
"""
a class that extracts attributes a scene presented by 2DGS
Usage example:
>>> gaussExtrator = GaussianExtractor(gaussians, render, pipe)
>>> gaussExtrator.reconstruction(view_points)
>>> mesh = gaussExtractor.export_mesh_bounded(...)
"""
if bg_color is None:
bg_color = [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
self.gaussians = gaussians
self.render = partial(render, pipe=pipe, bg_color=background)
self.clean()
@torch.no_grad()
def clean(self):
self.depthmaps = []
self.alphamaps = []
self.rgbmaps = []
self.normals = []
self.depth_normals = []
self.viewpoint_stack = []
@torch.no_grad()
def reconstruction(self, viewpoint_stack):
"""
reconstruct radiance field given cameras
"""
self.clean()
self.viewpoint_stack = viewpoint_stack
for i, viewpoint_cam in tqdm(enumerate(self.viewpoint_stack), desc="reconstruct radiance fields"):
render_pkg = self.render(viewpoint_cam, self.gaussians)
rgb = render_pkg['render']
alpha = render_pkg['mask']
normal = torch.nn.functional.normalize(render_pkg['normal'], dim=0)
depth = render_pkg['middepth']
depth_normal, _ = depth_to_normal(viewpoint_cam, depth)
depth_normal = depth_normal.permute(2,0,1)
# depth_normal = render_pkg['surf_normal']
self.rgbmaps.append(rgb.cpu())
self.depthmaps.append(depth.cpu())
self.alphamaps.append(alpha.cpu())
self.normals.append(normal.cpu())
self.depth_normals.append(depth_normal.cpu())
self.rgbmaps = torch.stack(self.rgbmaps, dim=0)
self.depthmaps = torch.stack(self.depthmaps, dim=0)
self.alphamaps = torch.stack(self.alphamaps, dim=0)
self.depth_normals = torch.stack(self.depth_normals, dim=0)
@torch.no_grad()
def extract_mesh_bounded(self, voxel_size=0.004, sdf_trunc=0.02, depth_trunc=3, mask_backgrond=True):
"""
Perform TSDF fusion given a fixed depth range, used in the paper.
voxel_size: the voxel size of the volume
sdf_trunc: truncation value
depth_trunc: maximum depth range, should depended on the scene's scales
mask_backgrond: whether to mask backgroud, only works when the dataset have masks
return o3d.mesh
"""
print("Running tsdf volume integration ...")
print(f'voxel_size: {voxel_size}')
print(f'sdf_trunc: {sdf_trunc}')
print(f'depth_truc: {depth_trunc}')
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length= voxel_size,
sdf_trunc=sdf_trunc,
color_type=o3d.pipelines.integration.TSDFVolumeColorType.RGB8
)
for i, cam_o3d in tqdm(enumerate(to_cam_open3d(self.viewpoint_stack)), desc="TSDF integration progress"):
rgb = self.rgbmaps[i]
depth = self.depthmaps[i]
# if we have mask provided, use it
if mask_backgrond and (self.viewpoint_stack[i].gt_alpha_mask is not None):
depth[(self.viewpoint_stack[i].gt_alpha_mask < 0.5)] = 0
# make open3d rgbd
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(np.asarray(rgb.permute(1,2,0).cpu().numpy() * 255, order="C", dtype=np.uint8)),
o3d.geometry.Image(np.asarray(depth.permute(1,2,0).cpu().numpy(), order="C")),
depth_trunc = depth_trunc, convert_rgb_to_intensity=False,
depth_scale = 1.0
)
volume.integrate(rgbd, intrinsic=cam_o3d.intrinsic, extrinsic=cam_o3d.extrinsic)
mesh = volume.extract_triangle_mesh()
return mesh
@torch.no_grad()
def extract_mesh_unbounded(self, resolution=1024):
"""
Experimental features, extracting meshes from unbounded scenes, not fully test across datasets.
#TODO: support color mesh exporting
sdf_trunc: truncation value
return o3d.mesh
"""
def contract(x):
mag = torch.linalg.norm(x, ord=2, dim=-1)[..., None]
return torch.where(mag < 1, x, (2 - (1 / mag)) * (x / mag))
def uncontract(y):
mag = torch.linalg.norm(y, ord=2, dim=-1)[..., None]
return torch.where(mag < 1, y, (1 / (2-mag) * (y/mag)))
def compute_sdf_perframe(i, points, depthmap, rgbmap, normalmap, viewpoint_cam):
"""
compute per frame sdf
"""
new_points = torch.cat([points, torch.ones_like(points[...,:1])], dim=-1) @ viewpoint_cam.full_proj_transform
z = new_points[..., -1:]
pix_coords = (new_points[..., :2] / new_points[..., -1:])
mask_proj = ((pix_coords > -1. ) & (pix_coords < 1.) & (z > 0)).all(dim=-1)
sampled_depth = torch.nn.functional.grid_sample(depthmap.cuda()[None], pix_coords[None, None], mode='bilinear', padding_mode='border', align_corners=True).reshape(-1, 1)
sampled_rgb = torch.nn.functional.grid_sample(rgbmap.cuda()[None], pix_coords[None, None], mode='bilinear', padding_mode='border', align_corners=True).reshape(3,-1).T
sampled_normal = torch.nn.functional.grid_sample(normalmap.cuda()[None], pix_coords[None, None], mode='bilinear', padding_mode='border', align_corners=True).reshape(3,-1).T
sdf = (sampled_depth-z)
return sdf, sampled_rgb, sampled_normal, mask_proj
def compute_unbounded_tsdf(samples, inv_contraction, voxel_size, return_rgb=False):
"""
Fusion all frames, perform adaptive sdf_funcation on the contract spaces.
"""
if inv_contraction is not None:
samples = inv_contraction(samples)
mask = torch.linalg.norm(samples, dim=-1) > 1
# adaptive sdf_truncation
sdf_trunc = 5 * voxel_size * torch.ones_like(samples[:, 0])
sdf_trunc[mask] *= 1/(2-torch.linalg.norm(samples, dim=-1)[mask].clamp(max=1.9))
else:
sdf_trunc = 5 * voxel_size
tsdfs = torch.ones_like(samples[:,0]) * 1
rgbs = torch.zeros((samples.shape[0], 3)).cuda()
weights = torch.ones_like(samples[:,0])
for i, viewpoint_cam in tqdm(enumerate(self.viewpoint_stack), desc="TSDF integration progress"):
sdf, rgb, normal, mask_proj = compute_sdf_perframe(i, samples,
depthmap = self.depthmaps[i],
rgbmap = self.rgbmaps[i],
normalmap = self.depth_normals[i],
viewpoint_cam=self.viewpoint_stack[i],
)
# volume integration
sdf = sdf.flatten()
mask_proj = mask_proj & (sdf > -sdf_trunc)
sdf = torch.clamp(sdf / sdf_trunc, min=-1.0, max=1.0)[mask_proj]
w = weights[mask_proj]
wp = w + 1
tsdfs[mask_proj] = (tsdfs[mask_proj] * w + sdf) / wp
rgbs[mask_proj] = (rgbs[mask_proj] * w[:,None] + rgb[mask_proj]) / wp[:,None]
# update weight
weights[mask_proj] = wp
if return_rgb:
return tsdfs, rgbs
return tsdfs
from utils.render_utils import transform_poses_pca, focus_point_fn
torch.cuda.empty_cache()
c2ws = np.array([np.linalg.inv(np.asarray((cam.world_view_transform.T).cpu().numpy())) for cam in self.viewpoint_stack])
poses = c2ws[:,:3,:] @ np.diag([1, -1, -1, 1])
center = (focus_point_fn(poses))
radius = np.linalg.norm(c2ws[:,:3,3] - center, axis=-1).min()
center = torch.from_numpy(center).float().cuda()
normalize = lambda x: (x - center) / radius
unnormalize = lambda x: (x * radius) + center
inv_contraction = lambda x: unnormalize(uncontract(x))
N = resolution
voxel_size = (radius * 2 / N)
print(f"Computing sdf gird resolution {N} x {N} x {N}")
print(f"Define the voxel_size as {voxel_size}")
sdf_function = lambda x: compute_unbounded_tsdf(x, inv_contraction, voxel_size)
from utils.mcube_utils import marching_cubes_with_contraction
R = contract(normalize(self.gaussians.get_xyz)).norm(dim=-1).cpu().numpy()
R = np.quantile(R, q=0.95)
R = min(R+0.01, 1.9)
mesh = marching_cubes_with_contraction(
sdf=sdf_function,
bounding_box_min=(-R, -R, -R),
bounding_box_max=(R, R, R),
level=0,
resolution=N,
inv_contraction=inv_contraction,
)
# coloring the mesh
torch.cuda.empty_cache()
mesh = mesh.as_open3d
print("texturing mesh ... ")
_, rgbs = compute_unbounded_tsdf(torch.tensor(np.asarray(mesh.vertices)).float().cuda(), inv_contraction=None, voxel_size=voxel_size, return_rgb=True)
mesh.vertex_colors = o3d.utility.Vector3dVector(rgbs.cpu().numpy())
return mesh
@torch.no_grad()
def export_image(self, path):
render_path = os.path.join(path, "renders")
gts_path = os.path.join(path, "gt")
vis_path = os.path.join(path, "vis")
os.makedirs(render_path, exist_ok=True)
os.makedirs(vis_path, exist_ok=True)
os.makedirs(gts_path, exist_ok=True)
for idx, viewpoint_cam in tqdm(enumerate(self.viewpoint_stack), desc="export images"):
gt = viewpoint_cam.original_image[0:3, :, :]
save_img_u8(gt.permute(1,2,0).cpu().numpy(), os.path.join(gts_path, '{0:05d}'.format(idx) + ".png"))
save_img_u8(self.rgbmaps[idx].permute(1,2,0).cpu().numpy(), os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
save_img_f32(self.depthmaps[idx][0].cpu().numpy(), os.path.join(vis_path, 'depth_{0:05d}'.format(idx) + ".tiff"))
save_img_u8(self.normals[idx].permute(1,2,0).cpu().numpy() * 0.5 + 0.5, os.path.join(vis_path, 'normal_{0:05d}'.format(idx) + ".png"))
save_img_u8(self.depth_normals[idx].permute(1,2,0).cpu().numpy() * 0.5 + 0.5, os.path.join(vis_path, 'depth_normal_{0:05d}'.format(idx) + ".png")) |