File size: 8,507 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
### adapted from https://github.com/NVIDIAGameWorks/kaolin/blob/master/kaolin/ops/conversions/tetmesh.py

# Copyright (c) 2021,22 NVIDIA CORPORATION & AFFILIATES.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch

__all__ = ['marching_tetrahedra']

triangle_table = torch.tensor([
    [-1, -1, -1, -1, -1, -1],
    [1, 0, 2, -1, -1, -1],
    [4, 0, 3, -1, -1, -1],
    [1, 4, 2, 1, 3, 4],
    [3, 1, 5, -1, -1, -1],
    [2, 3, 0, 2, 5, 3],
    [1, 4, 0, 1, 5, 4],
    [4, 2, 5, -1, -1, -1],
    [4, 5, 2, -1, -1, -1],
    [4, 1, 0, 4, 5, 1],
    [3, 2, 0, 3, 5, 2],
    [1, 3, 5, -1, -1, -1],
    [4, 1, 2, 4, 3, 1],
    [3, 0, 4, -1, -1, -1],
    [2, 0, 1, -1, -1, -1],
    [-1, -1, -1, -1, -1, -1]
], dtype=torch.long)

num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long)
base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long)
v_id = torch.pow(2, torch.arange(4, dtype=torch.long))


def _unbatched_marching_tetrahedra(vertices, tets, sdf, scales):
    """unbatched marching tetrahedra.

    Refer to :func:`marching_tetrahedra`.
    """
    device = vertices.device
    
    # call by chunk
    chunk_size = 32 * 1024 * 1024
    if tets.shape[0] > chunk_size:
        merged_verts = None
        merged_scales = None
        merged_faces = None
        merged_verts_ids = None
        for tet_chunk in torch.chunk(tets, tets.shape[0] // chunk_size + 1):
            torch.cuda.empty_cache()
            verts, verts_scales, faces, verts_ids = _unbatched_marching_tetrahedra(vertices, tet_chunk, sdf, scales)
            
            if merged_verts is None:
                merged_verts = verts
                merged_scales = verts_scales
                merged_faces = faces
                merged_verts_ids = verts_ids
            else:
                all_edges = torch.cat([merged_verts_ids, verts_ids], dim=0)
                unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
                # merge vertices
                unique_verts_0 = torch.zeros((unique_edges.shape[0], 2, 3), dtype=torch.float, device=device)
                unique_verts_1 = torch.zeros((unique_edges.shape[0], 2, 1), dtype=torch.float, device=device)
                unique_verts_0[idx_map[:merged_verts[0].shape[0]]] = merged_verts[0]  
                unique_verts_0[idx_map[merged_verts[0].shape[0]:]] = verts[0]         
                unique_verts_1[idx_map[:merged_verts[1].shape[0]]] = merged_verts[1]  
                unique_verts_1[idx_map[merged_verts[1].shape[0]:]] = verts[1]         
                # merge scales
                unique_scales = torch.zeros((unique_edges.shape[0], 2, 1), dtype=torch.float, device=device)
                unique_scales[idx_map[:merged_verts[0].shape[0]]] = merged_scales     
                unique_scales[idx_map[merged_verts[0].shape[0]:]] = verts_scales      
                
                # merge faces
                unique_faces_0 = idx_map[merged_faces.reshape(-1)].reshape(-1, 3)
                unique_faces_1 = idx_map[faces.reshape(-1) + merged_verts[0].shape[0]].reshape(-1, 3)

                merged_faces = torch.cat([unique_faces_0, unique_faces_1], dim=0)
                merged_verts = (unique_verts_0, unique_verts_1)
                merged_scales = unique_scales
                merged_verts_ids = unique_edges
                torch.cuda.empty_cache()
                
        return merged_verts, merged_scales, merged_faces, merged_verts_ids
        
    with torch.no_grad():
        occ_n = sdf > 0
        occ_fx4 = occ_n[tets.reshape(-1)].reshape(-1, 4)
        occ_sum = torch.sum(occ_fx4, -1)
        
        valid_tets = (occ_sum > 0) & (occ_sum < 4)
        
        # find all vertices
        all_edges = tets[valid_tets][:, base_tet_edges.to(device)].reshape(-1, 2)
        
        order = (all_edges[:, 0] > all_edges[:, 1]).bool()
        all_edges[order] = all_edges[order][:, [1, 0]]
        
        unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
        
        unique_edges = unique_edges.long()
        mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
        mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=device) * -1
        mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=device)
        idx_map = mapping[idx_map]

        interp_v = unique_edges[mask_edges]
    edges_to_interp = vertices[interp_v.reshape(-1)].reshape(-1, 2, 3)
    edges_to_interp_sdf = sdf[interp_v.reshape(-1)].reshape(-1, 2, 1)
    verts_scales = scales[interp_v.reshape(-1)].reshape(-1, 2, 1)
    
    verts = (edges_to_interp, edges_to_interp_sdf)
    idx_map = idx_map.reshape(-1, 6)

    tetindex = (occ_fx4[valid_tets] * v_id.to(device).unsqueeze(0)).sum(-1)
    num_triangles = num_triangles_table.to(device)[tetindex]
    triangle_table_device = triangle_table.to(device)

    # Generate triangle indices
    faces = torch.cat((
        torch.gather(input=idx_map[num_triangles == 1], dim=1,
                     index=triangle_table_device[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
        torch.gather(input=idx_map[num_triangles == 2], dim=1,
                     index=triangle_table_device[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
    ), dim=0)

    return verts, verts_scales, faces, interp_v


def marching_tetrahedra(vertices, tets, sdf, scales):
    r"""Convert discrete signed distance fields encoded on tetrahedral grids to triangle 
    meshes using marching tetrahedra algorithm as described in `An efficient method of 
    triangulating equi-valued surfaces by using tetrahedral cells`_. The output surface is differentiable with respect to
    input vertex positions and the SDF values. For more details and example usage in learning, see 
    `Deep Marching Tetrahedra\: a Hybrid Representation for High-Resolution 3D Shape Synthesis`_ NeurIPS 2021.


    Args:
        vertices (torch.tensor): batched vertices of tetrahedral meshes, of shape
                                 :math:`(\text{batch_size}, \text{num_vertices}, 3)`.
        tets (torch.tensor): unbatched tetrahedral mesh topology, of shape
                             :math:`(\text{num_tetrahedrons}, 4)`.
        sdf (torch.tensor): batched SDFs which specify the SDF value of each vertex, of shape
                            :math:`(\text{batch_size}, \text{num_vertices})`.

    Returns:
        (list[torch.Tensor], list[torch.LongTensor], (optional) list[torch.LongTensor]): 

            - the list of vertices for mesh converted from each tetrahedral grid.
            - the list of faces for mesh converted from each tetrahedral grid.

    Example:
        >>> vertices = torch.tensor([[[0, 0, 0],
        ...               [1, 0, 0],
        ...               [0, 1, 0],
        ...               [0, 0, 1]]], dtype=torch.float)
        >>> tets = torch.tensor([[0, 1, 2, 3]], dtype=torch.long)
        >>> sdf = torch.tensor([[-1., -1., 0.5, 0.5]], dtype=torch.float)
        >>> verts_list, faces_list, tet_idx_list = marching_tetrahedra(vertices, tets, sdf, True)
        >>> verts_list[0]
        tensor([[0.0000, 0.6667, 0.0000],
                [0.0000, 0.0000, 0.6667],
                [0.3333, 0.6667, 0.0000],
                [0.3333, 0.0000, 0.6667]])
        >>> faces_list[0]
        tensor([[3, 0, 1],
                [3, 2, 0]])
        >>> tet_idx_list[0]
        tensor([0, 0])

    .. _An efficient method of triangulating equi-valued surfaces by using tetrahedral cells:
        https://search.ieice.org/bin/summary.php?id=e74-d_1_214

    .. _Deep Marching Tetrahedra\: a Hybrid Representation for High-Resolution 3D Shape Synthesis:
            https://arxiv.org/abs/2111.04276
    """

    list_of_outputs = [_unbatched_marching_tetrahedra(vertices[b], tets, sdf[b], scales[b]) for b in range(vertices.shape[0])]
    return list(zip(*list_of_outputs))