Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,626 Bytes
476e0f0 b823627 476e0f0 b823627 476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
import warnings
warnings.filterwarnings("ignore") # ignore all warnings
from typing import *
import os
import argparse
import logging
import time
from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
import imageio
import torch
import torch.nn.functional as tF
from einops import rearrange
import accelerate
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import DDIMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, AutoencoderKL
from kiui.cam import orbit_camera
from src.options import opt_dict
from src.models import GSAutoencoderKL, GSRecon, ElevEst
import src.utils.util as util
import src.utils.op_util as op_util
import src.utils.geo_util as geo_util
import src.utils.vis_util as vis_util
from src.utils.metrics import TextConditionMetrics
from extensions.diffusers_diffsplat import PixArtTransformerMV2DModel, PixArtSigmaMVPipeline
def main():
parser = argparse.ArgumentParser(
description="Infer a diffusion model for 3D object generation"
)
parser.add_argument(
"--config_file",
type=str,
required=True,
help="Path to the config file"
)
parser.add_argument(
"--tag",
type=str,
default=None,
help="Tag that refers to the current experiment"
)
parser.add_argument(
"--output_dir",
type=str,
default="out",
help="Path to the output directory"
)
parser.add_argument(
"--hdfs_dir",
type=str,
default=None,
help="Path to the HDFS directory to save checkpoints"
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for the PRNG"
)
parser.add_argument(
"--gpu_id",
type=int,
default=0,
help="GPU ID to use"
)
parser.add_argument(
"--half_precision",
action="store_true",
help="Use half precision for inference"
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help="Enable TF32 for faster training on Ampere GPUs"
)
parser.add_argument(
"--image_path",
type=str,
default=None,
help="Path to the image for reconstruction"
)
parser.add_argument(
"--image_dir",
type=str,
default=None,
help="Path to the directory of images for reconstruction"
)
parser.add_argument(
"--infer_from_iter",
type=int,
default=-1,
help="The iteration to load the checkpoint from"
)
parser.add_argument(
"--rembg_and_center",
action="store_true",
help="Whether or not to remove background and center the image"
)
parser.add_argument(
"--rembg_model_name",
default="u2net",
type=str,
help="Rembg model, see https://github.com/danielgatis/rembg#models"
)
parser.add_argument(
"--border_ratio",
default=0.2,
type=float,
help="Rembg output border ratio"
)
parser.add_argument(
"--scheduler_type",
type=str,
default="sde-dpmsolver++",
help="Type of diffusion scheduler"
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=20,
help="Diffusion steps for inference"
)
parser.add_argument(
"--guidance_scale",
type=float,
default=4.5,
help="Classifier-free guidance scale for inference"
)
parser.add_argument(
"--triangle_cfg_scaling",
action="store_true",
help="Whether or not to use triangle classifier-free guidance scaling"
)
parser.add_argument(
"--min_guidance_scale",
type=float,
default=1.,
help="Minimum of triangle cfg scaling"
)
parser.add_argument(
"--eta",
type=float,
default=1.,
help="The weight of noise for added noise in diffusion step"
)
parser.add_argument(
"--init_std",
type=float,
default=0.,
help="Standard deviation of Gaussian grids (cf. Instant3D) for initialization"
)
parser.add_argument(
"--init_noise_strength",
type=float,
default=0.98,
help="Noise strength of Gaussian grids (cf. Instant3D) for initialization"
)
parser.add_argument(
"--init_bg",
type=float,
default=0.,
help="Gray background of Gaussian grids for initialization"
)
parser.add_argument(
"--elevation",
type=float,
default=None,
help="The elevation of rendering"
)
parser.add_argument(
"--use_elevest",
action="store_true",
help="Whether or not to use an elevation estimation model"
)
parser.add_argument(
"--distance",
type=float,
default=1.4,
help="The distance of rendering"
)
parser.add_argument(
"--prompt",
type=str,
default="",
help="Caption prompt for generation"
)
parser.add_argument(
"--negative_prompt",
type=str,
# default="worst quality, normal quality, low quality, low res, blurry, ugly, disgusting",
default="",
help="Negative prompt for better classifier-free guidance"
)
parser.add_argument(
"--prompt_file",
type=str,
default=None,
help="Path to the file of text prompts for generation"
)
parser.add_argument(
"--render_res",
type=int,
default=None,
help="Resolution of GS rendering"
)
parser.add_argument(
"--opacity_threshold",
type=float,
default=0.,
help="The min opacity value for filtering floater Gaussians"
)
parser.add_argument(
"--opacity_threshold_ply",
type=float,
default=0.,
help="The min opacity value for filtering floater Gaussians in ply file"
)
parser.add_argument(
"--save_ply",
action="store_true",
help="Whether or not to save the generated Gaussian ply file"
)
parser.add_argument(
"--output_video_type",
type=str,
default=None,
help="Type of the output video"
)
parser.add_argument(
"--name_by_id",
action="store_true",
help="Whether or not to name the output by the prompt/image ID"
)
parser.add_argument(
"--eval_text_cond",
action="store_true",
help="Whether or not to evaluate text-conditioned generation"
)
parser.add_argument(
"--load_pretrained_gsrecon",
type=str,
default="gsrecon_gobj265k_cnp_even4",
help="Tag of a pretrained GSRecon in this project"
)
parser.add_argument(
"--load_pretrained_gsrecon_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSRecon checkpoint"
)
parser.add_argument(
"--load_pretrained_gsvae",
type=str,
default="gsvae_gobj265k_sdxl_fp16",
help="Tag of a pretrained GSVAE in this project"
)
parser.add_argument(
"--load_pretrained_gsvae_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSVAE checkpoint"
)
parser.add_argument(
"--load_pretrained_elevest",
type=str,
default="elevest_gobj265k_b_C25",
help="Tag of a pretrained GSRecon in this project"
)
parser.add_argument(
"--load_pretrained_elevest_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSRecon checkpoint"
)
# Parse the arguments
args, extras = parser.parse_known_args()
# Parse the config file
configs = util.get_configs(args.config_file, extras) # change yaml configs by `extras`
# Parse the option dict
opt = opt_dict[configs["opt_type"]]
if "opt" in configs:
for k, v in configs["opt"].items():
setattr(opt, k, v)
# Create an experiment directory using the `tag`
if args.tag is None:
args.tag = time.strftime("%Y-%m-%d_%H:%M") + "_" + \
os.path.split(args.config_file)[-1].split()[0] # config file name
# Create the experiment directory
exp_dir = os.path.join(args.output_dir, args.tag)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
infer_dir = os.path.join(exp_dir, "inference")
os.makedirs(ckpt_dir, exist_ok=True)
os.makedirs(infer_dir, exist_ok=True)
if args.hdfs_dir is not None:
args.project_hdfs_dir = args.hdfs_dir
args.hdfs_dir = os.path.join(args.hdfs_dir, args.tag)
# Initialize the logger
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S",
level=logging.INFO
)
logger = logging.getLogger(__name__)
file_handler = logging.FileHandler(os.path.join(args.output_dir, args.tag, "log_infer.txt")) # output to file
file_handler.setFormatter(logging.Formatter(
fmt="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S"
))
logger.addHandler(file_handler)
logger.propagate = True # propagate to the root logger (console)
# Set the random seed
if args.seed >= 0:
accelerate.utils.set_seed(args.seed)
logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")
# Enable TF32 for faster training on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
# Set options for image-conditioned models
if args.image_path is not None or args.image_dir is not None:
opt.prediction_type = "v_prediction"
opt.view_concat_condition = True
opt.input_concat_binary_mask = True
if args.guidance_scale > 3.:
logger.info(
f"WARNING: guidance scale ({args.guidance_scale}) is too large for image-conditioned models. " +
"Please set it to a smaller value (e.g., 2.0) for better results.\n"
)
# Load the image for reconstruction
if args.image_dir is not None:
logger.info(f"Load images from [{args.image_dir}]\n")
image_paths = [
os.path.join(args.image_dir, filename)
for filename in os.listdir(args.image_dir)
if filename.endswith(".png") or filename.endswith(".jpg") or \
filename.endswith(".jpeg") or filename.endswith(".webp")
]
image_paths = sorted(image_paths)
elif args.image_path is not None:
logger.info(f"Load image from [{args.image_path}]\n")
image_paths = [args.image_path]
else:
logger.info(f"No image condition\n")
image_paths = [None]
# Load text prompts for generation
if args.prompt_file is not None:
with open(args.prompt_file, "r") as f:
prompts = [line.strip() for line in f.readlines() if line.strip() != ""]
negative_prompt = args.negative_prompt.replace("_", " ")
negative_promts = [negative_prompt] * len(prompts)
else:
prompt = args.prompt.replace("_", " ")
negative_prompt = args.negative_prompt.replace("_", " ")
prompts, negative_promts = [prompt], [negative_prompt]
# Initialize the model, optimizer and lr scheduler
in_channels = 4 # hard-coded for PixArt-Sigma
if opt.input_concat_plucker:
in_channels += 6
if opt.input_concat_binary_mask:
in_channels += 1
transformer_from_pretrained_kwargs = {
"sample_size": opt.input_res // 8, # `8` hard-coded for PixArt-Sigma
"in_channels": in_channels,
"out_channels": 8, # hard-coded for PixArt-Sigma
"zero_init_conv_in": opt.zero_init_conv_in,
"view_concat_condition": opt.view_concat_condition,
"input_concat_plucker": opt.input_concat_plucker,
"input_concat_binary_mask": opt.input_concat_binary_mask,
}
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="text_encoder")
if opt.load_fp16vae_for_sdxl and args.half_precision: # fixed fp16 VAE for SDXL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix")
else:
vae = AutoencoderKL.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae")
gsvae = GSAutoencoderKL(opt)
gsrecon = GSRecon(opt)
if args.scheduler_type == "ddim":
noise_scheduler = DDIMScheduler.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="scheduler")
elif "dpmsolver" in args.scheduler_type:
noise_scheduler = DPMSolverMultistepScheduler.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="scheduler")
noise_scheduler.config.algorithm_type = args.scheduler_type
elif args.scheduler_type == "edm":
noise_scheduler = EulerDiscreteScheduler.from_pretrained("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="scheduler")
else:
raise NotImplementedError(f"Scheduler [{args.scheduler_type}] is not supported by now")
if opt.common_tricks:
noise_scheduler.config.timestep_spacing = "trailing"
noise_scheduler.config.rescale_betas_zero_snr = True
if opt.prediction_type is not None:
noise_scheduler.config.prediction_type = opt.prediction_type
if opt.beta_schedule is not None:
noise_scheduler.config.beta_schedule = opt.beta_schedule
# Load checkpoint
logger.info(f"Load checkpoint from iteration [{args.infer_from_iter}]\n")
if not os.path.exists(os.path.join(ckpt_dir, f"{args.infer_from_iter:06d}")):
args.infer_from_iter = util.load_ckpt(
ckpt_dir,
args.infer_from_iter,
args.hdfs_dir,
None, # `None`: not load model ckpt here
)
path = os.path.join(ckpt_dir, f"{args.infer_from_iter:06d}")
os.system(f"python3 extensions/merge_safetensors.py {path}/transformer_ema") # merge safetensors for loading
transformer, loading_info = PixArtTransformerMV2DModel.from_pretrained_new(path, subfolder="transformer_ema",
low_cpu_mem_usage=False, ignore_mismatched_sizes=True, output_loading_info=True, **transformer_from_pretrained_kwargs)
for key in loading_info.keys():
assert len(loading_info[key]) == 0 # no missing_keys, unexpected_keys, mismatched_keys, error_msgs
# Freeze all models
text_encoder.requires_grad_(False)
vae.requires_grad_(False)
gsvae.requires_grad_(False)
gsrecon.requires_grad_(False)
transformer.requires_grad_(False)
text_encoder.eval()
vae.eval()
gsvae.eval()
gsrecon.eval()
transformer.eval()
# Load pretrained reconstruction and gsvae models
logger.info(f"Load GSVAE checkpoint from [{args.load_pretrained_gsvae}] iteration [{args.load_pretrained_gsvae_ckpt:06d}]\n")
gsvae = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsvae, "checkpoints"),
args.load_pretrained_gsvae_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsvae),
gsvae,
)
logger.info(f"Load GSRecon checkpoint from [{args.load_pretrained_gsrecon}] iteration [{args.load_pretrained_gsrecon_ckpt:06d}]\n")
gsrecon = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsrecon, "checkpoints"),
args.load_pretrained_gsrecon_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsrecon),
gsrecon,
)
text_encoder = text_encoder.to(f"cuda:{args.gpu_id}")
vae = vae.to(f"cuda:{args.gpu_id}")
gsvae = gsvae.to(f"cuda:{args.gpu_id}")
gsrecon = gsrecon.to(f"cuda:{args.gpu_id}")
transformer = transformer.to(f"cuda:{args.gpu_id}")
# Set diffusion pipeline
V_in = opt.num_input_views
pipeline = PixArtSigmaMVPipeline(
text_encoder=text_encoder, tokenizer=tokenizer,
vae=vae, transformer=transformer,
scheduler=noise_scheduler,
)
pipeline.set_progress_bar_config(disable=False)
# pipeline.enable_xformers_memory_efficient_attention()
if args.seed >= 0:
generator = torch.Generator(device=f"cuda:{args.gpu_id}").manual_seed(args.seed)
else:
generator = None
# Set rendering resolution
if args.render_res is None:
args.render_res = opt.input_res
# Load elevation estimation model
if args.use_elevest:
elevest = ElevEst(opt)
elevest.requires_grad_(False)
elevest.eval()
logger.info(f"Load ElevEst checkpoint from [{args.load_pretrained_elevest}] iteration [{args.load_pretrained_elevest_ckpt:06d}]\n")
elevest = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_elevest, "checkpoints"),
args.load_pretrained_elevest_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_elevest),
elevest,
)
elevest = elevest.to(f"cuda:{args.gpu_id}")
# Save all experimental parameters of this run to a file (args and configs)
_ = util.save_experiment_params(args, configs, opt, infer_dir)
# Evaluation for text-conditioned generation
text_condition_metrics = TextConditionMetrics(device_idx=args.gpu_id) if args.eval_text_cond else None
# Inference
CLIPSIM, CLIPRPREC, IMAGEREWARD = [], [], []
for i in range(len(image_paths)): # to save outputs with the same name as the input image
image_path = image_paths[i]
if image_path is not None:
# (Optional) Remove background and center the image
if args.rembg_and_center:
image_path = op_util.rembg_and_center_wrapper(image_path, opt.input_res, args.border_ratio, model_name=args.rembg_model_name)
image_name = image_path.split('/')[-1].split('.')[0]
image = plt.imread(image_path)
if image.shape[-1] == 4:
image = image[..., :3] * image[..., 3:4] + (1. - image[..., 3:4]) # RGBA to RGB white background
image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0) # (1, 3, H, W)
image = tF.interpolate(
image, size=(opt.input_res, opt.input_res),
mode="bilinear", align_corners=False, antialias=True
)
image = image.unsqueeze(1).to(device=f"cuda:{args.gpu_id}") # (B=1, V_cond=1, 3, H, W)
else:
image_name = ""
image = None
# Elevation estimation
if image is not None:
if args.elevation is None:
assert args.use_elevest, "Elevation estimation is required for image-conditioned generation if `args.elevation` is not provided"
with torch.no_grad():
elevation = -elevest.predict_elev(image.squeeze(1)).cpu().item()
logger.info(f"Elevation estimation: [{elevation}] deg\n")
else:
elevation = args.elevation
else:
elevation = args.elevation if args.elevation is not None else 10.
# Get plucker embeddings
fxfycxcy = torch.tensor([opt.fxfy, opt.fxfy, 0.5, 0.5], device=f"cuda:{args.gpu_id}").float()
elevations = torch.tensor([-elevation] * 4, device=f"cuda:{args.gpu_id}").deg2rad().float()
azimuths = torch.tensor([0., 90., 180., 270.], device=f"cuda:{args.gpu_id}").deg2rad().float() # hard-coded
radius = torch.tensor([args.distance] * 4, device=f"cuda:{args.gpu_id}").float()
input_C2W = geo_util.orbit_camera(elevations, azimuths, radius, is_degree=False) # (V_in, 4, 4)
input_C2W[:, :3, 1:3] *= -1 # OpenGL -> OpenCV
input_fxfycxcy = fxfycxcy.unsqueeze(0).repeat(input_C2W.shape[0], 1) # (V_in, 4)
if opt.input_concat_plucker:
H = W = opt.input_res
plucker, _ = geo_util.plucker_ray(H, W, input_C2W.unsqueeze(0), input_fxfycxcy.unsqueeze(0))
plucker = plucker.squeeze(0) # (V_in, 6, H, W)
if opt.view_concat_condition:
plucker = torch.cat([plucker[0:1, ...], plucker], dim=0) # (V_in+1, 6, H, W)
else:
plucker = None
IMAGES = []
for j in range(len(prompts)):
prompt, negative_prompt = prompts[j], negative_promts[j]
MAX_NAME_LEN = 20 # TODO: make `20` configurable
prompt_name = prompt[:MAX_NAME_LEN] + "..." if prompt[:MAX_NAME_LEN] != "" else prompt
if not args.name_by_id:
name = f"[{image_name}]_[{prompt_name}]_{args.infer_from_iter:06d}"
else:
name = f"{i:03d}_{j:03d}_{args.infer_from_iter:06d}"
with torch.no_grad():
with torch.autocast("cuda", torch.bfloat16 if args.half_precision else torch.float32):
out = pipeline(
image, prompt=prompt, negative_prompt=negative_prompt,
num_inference_steps=args.num_inference_steps, guidance_scale=args.guidance_scale,
triangle_cfg_scaling=args.triangle_cfg_scaling,
min_guidance_scale=args.min_guidance_scale, max_guidance_scale=args.guidance_scale,
output_type="latent", eta=args.eta, generator=generator,
plucker=plucker, num_views=V_in,
init_std=args.init_std, init_noise_strength=args.init_noise_strength, init_bg=args.init_bg,
).images
out = out / gsvae.scaling_factor + gsvae.shift_factor
render_outputs = gsvae.decode_and_render_gslatents(
gsrecon,
out, input_C2W.unsqueeze(0), input_fxfycxcy.unsqueeze(0),
height=args.render_res, width=args.render_res,
opacity_threshold=args.opacity_threshold,
)
images = render_outputs["image"].squeeze(0) # (V_in, 3, H, W)
IMAGES.append(images)
images = vis_util.tensor_to_image(rearrange(images, "v c h w -> c h (v w)")) # (H, V*W, 3)
imageio.imwrite(os.path.join(infer_dir, f"{name}_gs.png"), images)
# Save Gaussian ply file
if args.save_ply:
ply_path = os.path.join(infer_dir, f"{name}.ply")
render_outputs["pc"][0].save_ply(ply_path, args.opacity_threshold_ply)
# Render video
if args.output_video_type is not None:
fancy_video = "fancy" in args.output_video_type
save_gif = "gif" in args.output_video_type
if fancy_video:
render_azimuths = np.arange(0., 720., 40)
else:
render_azimuths = np.arange(0., 360., 10)
C2W = []
for i in range(len(render_azimuths)):
c2w = torch.from_numpy(
orbit_camera(-elevation, render_azimuths[i], radius=args.distance, opengl=True)
).to(f"cuda:{args.gpu_id}")
c2w[:3, 1:3] *= -1 # OpenGL -> OpenCV
C2W.append(c2w)
C2W = torch.stack(C2W, dim=0) # (V, 4, 4)
fxfycxcy_V = fxfycxcy.unsqueeze(0).repeat(C2W.shape[0], 1)
images = []
for v in tqdm(range(C2W.shape[0]), desc="Rendering", ncols=125):
render_outputs = gsvae.decode_and_render_gslatents(
gsrecon,
out, # (V_in, 4, H', W')
input_C2W.unsqueeze(0), # (1, V_in, 4, 4)
input_fxfycxcy.unsqueeze(0), # (1, V_in, 4)
C2W[v].unsqueeze(0).unsqueeze(0), # (B=1, V=1, 4, 4)
fxfycxcy_V[v].unsqueeze(0).unsqueeze(0), # (B=1, V=1, 4)
height=args.render_res, width=args.render_res,
scaling_modifier=min(render_azimuths[v] / 360, 1) if fancy_video else 1.,
opacity_threshold=args.opacity_threshold,
)
image = render_outputs["image"].squeeze(0).squeeze(0) # (3, H, W)
images.append(vis_util.tensor_to_image(image, return_pil=save_gif))
if save_gif:
images[0].save(
os.path.join(infer_dir, f"{name}.gif"),
save_all=True,
append_images=images[1:],
optimize=False,
duration=1000 // 30,
loop=0,
)
else: # save mp4
images = np.stack(images, axis=0) # (V, H, W, 3)
imageio.mimwrite(os.path.join(infer_dir, f"{name}.mp4"), images, fps=30)
# Evaluate text-conditioned generation across views
if text_condition_metrics is not None:
IMAGES = torch.stack(IMAGES, dim=0) # (N_prompt, V_in, 3, H, W)
for v in range(V_in):
clipsim, cliprprec, imagereward = text_condition_metrics.evaluate(
[vis_util.tensor_to_image(IMAGES[i, v, ...], return_pil=True) for i in range(len(IMAGES))],
prompts,
)
CLIPSIM.append(clipsim)
CLIPRPREC.append(cliprprec)
IMAGEREWARD.append(imagereward)
if image_path is not None and args.rembg_and_center:
os.system(f"rm {image_path}")
logger.info(f"Mean\t CosSim: {np.mean(CLIPSIM):.6f}\t R-Prec: {np.mean(CLIPRPREC):.6f}\t ImageReward: {np.mean(IMAGEREWARD):.6f}")
logger.info(f"Std\t CosSim: {np.std(CLIPSIM):.6f}\t R-Prec: {np.std(CLIPRPREC):.6f}\t ImageReward: {np.std(IMAGEREWARD):.6f}")
logger.info("Inference finished!\n")
if __name__ == "__main__":
main()
|