File size: 18,141 Bytes
476e0f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from typing import *
from torch import Tensor
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from lpips import LPIPS
from src.models.gsrecon import GSRecon

from skimage.metrics import structural_similarity as calculate_ssim
import numpy as np
import torch
from torch import nn
import torch.nn.functional as tF
from einops import rearrange
from diffusers import AutoencoderKL, AutoencoderTiny
from diffusers.models.autoencoders.autoencoder_kl import Decoder
from diffusers.models.autoencoders.autoencoder_tiny import DecoderTiny

from src.options import Options


TAE_DICT = {
    "stable-diffusion-v1-5/stable-diffusion-v1-5": "madebyollin/taesd",
    "stabilityai/stable-diffusion-2-1": "madebyollin/taesd",
    "PixArt-alpha/PixArt-XL-2-512x512": "madebyollin/taesd",
    "stabilityai/stable-diffusion-xl-base-1.0": "madebyollin/taesdxl",
    "madebyollin/sdxl-vae-fp16-fix": "madebyollin/taesdxl",
    "PixArt-alpha/PixArt-Sigma-XL-2-512-MS": "madebyollin/taesdxl",
    "stabilityai/stable-diffusion-3-medium-diffusers": "madebyollin/taesd3",
    "stabilityai/stable-diffusion-3.5-medium": "madebyollin/taesd3",
    "stabilityai/stable-diffusion-3.5-large": "madebyollin/taesd3",
    "black-forest-labs/FLUX.1-dev": "madebyollin/taef1",
}


class GSAutoencoderKL(nn.Module):
    def __init__(self, opt: Options):
        super().__init__()

        self.opt = opt

        AutoencoderKL_from = AutoencoderKL.from_config if opt.vae_from_scratch else AutoencoderKL.from_pretrained
        AutoencoderTiny_from = AutoencoderTiny.from_config if opt.vae_from_scratch else AutoencoderTiny.from_pretrained

        if not opt.use_tinyae:
            if "fp16" not in opt.pretrained_model_name_or_path:
                if "Sigma" in opt.pretrained_model_name_or_path:  # PixArt-Sigma
                    self.vae = AutoencoderKL_from("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae")
                else:
                    self.vae = AutoencoderKL_from(opt.pretrained_model_name_or_path, subfolder="vae")
            else:  # fixed fp16 VAE for SDXL
                self.vae = AutoencoderKL_from(opt.pretrained_model_name_or_path)
            self.vae.enable_slicing()  # to save memory
        else:
            self.vae = AutoencoderTiny_from(TAE_DICT[opt.pretrained_model_name_or_path])

        # Encode input Conv
        new_conv_in = nn.Conv2d(
            12,  # number of GS properties
            self.vae.config.block_out_channels[0],
            kernel_size=3,
            stride=1,
            padding=1,
        )
        if not opt.use_tinyae:
            init_conv_in_weight = torch.cat([self.vae.encoder.conv_in.weight.data]*4, dim=1)
        else:
            init_conv_in_weight = torch.cat([self.vae.encoder.layers[0].weight.data]*4, dim=1)
        # init_conv_in_weight /= 4  # rescale input conv weight parameters
        new_conv_in.weight.data.copy_(init_conv_in_weight)
        if not opt.use_tinyae:
            new_conv_in.bias.data.copy_(self.vae.encoder.conv_in.bias.data)
            self.vae.encoder.conv_in = new_conv_in
        else:
            new_conv_in.bias.data.copy_(self.vae.encoder.layers[0].bias.data)
            self.vae.encoder.layers[0] = new_conv_in

        # Decoder output Conv
        new_conv_out = nn.Conv2d(
            self.vae.config.block_out_channels[0],
            12,  # number of GS properties
            kernel_size=3,
            stride=1,
            padding=1,
        )
        if not opt.use_tinyae:
            init_conv_out_weight = torch.cat([self.vae.decoder.conv_out.weight.data]*4, dim=0)
        else:
            init_conv_out_weight = torch.cat([self.vae.decoder.layers[-1].weight.data]*4, dim=0)
        new_conv_out.weight.data.copy_(init_conv_out_weight)
        if not opt.use_tinyae:
            init_conv_out_bias = torch.cat([self.vae.decoder.conv_out.bias.data]*4, dim=0)
        else:
            init_conv_out_bias = torch.cat([self.vae.decoder.layers[-1].bias.data]*4, dim=0)
        new_conv_out.bias.data.copy_(init_conv_out_bias)
        if not opt.use_tinyae:
            self.vae.decoder.conv_out = new_conv_out
        else:
            self.vae.decoder.layers[-1] = new_conv_out

        if opt.freeze_encoder:
            self.vae.encoder.requires_grad_(False)
            self.vae.quant_conv.requires_grad_(False)

        self.scaling_factor = opt.scaling_factor if opt.scaling_factor is not None else self.vae.config.scaling_factor
        self.scaling_factor = self.scaling_factor if self.scaling_factor is not None else 1.
        self.shift_factor = opt.shift_factor if opt.shift_factor is not None else self.vae.config.shift_factor
        self.shift_factor = self.shift_factor if self.shift_factor is not None else 0.

        # TinyAE
        tae = AutoencoderTiny_from(TAE_DICT[opt.pretrained_model_name_or_path])
        # Tiny decoder output Conv
        new_conv_out = nn.Conv2d(
            tae.config.block_out_channels[0],  # the same as `self.vae.config.block_out_channels[0]`
            12,  # number of GS properties
            kernel_size=3,
            stride=1,
            padding=1,
        )
        init_conv_out_weight = torch.cat([tae.decoder.layers[-1].weight.data]*4, dim=0)
        new_conv_out.weight.data.copy_(init_conv_out_weight)
        init_conv_out_bias = torch.cat([tae.decoder.layers[-1].bias.data]*4, dim=0)
        new_conv_out.bias.data.copy_(init_conv_out_bias)
        tae.decoder.layers[-1] = new_conv_out
        self.tiny_decoder = tae.decoder

        if opt.use_tiny_decoder:
            assert not opt.use_tinyae  # so 2 decoders in this model

    def forward(self, *args, func_name="compute_loss", **kwargs):
        # To support different forward functions for models wrapped by `accelerate`
        return getattr(self, func_name)(*args, **kwargs)

    def compute_loss(self,
        data: Optional[Dict[str, Tensor]],
        lpips_loss: LPIPS,
        gsrecon: GSRecon,
        step: int,
        latents: Optional[Tensor] = None,
        kl: Optional[float] = None,
        gs: Optional[Tensor] = None,
        use_tiny_decoder: bool = False,
        dtype: torch.dtype = torch.float32,
    ):
        outputs = {}

        color_name = "albedo" if self.opt.input_albedo else "image"

        images = data[color_name].to(dtype)  # (B, V, 3, H, W)
        masks = data["mask"].to(dtype)  # (B, V, 1, H, W)
        C2W = data["C2W"].to(dtype)  # (B, V, 4, 4)
        fxfycxcy = data["fxfycxcy"].to(dtype)  # (B, V, 4)

        # Input views
        V_in = self.opt.num_input_views
        input_images = images[:, :V_in, ...]
        input_C2W = C2W[:, :V_in, ...]
        input_fxfycxcy = fxfycxcy[:, :V_in, ...]

        if self.opt.input_normal:
            input_images = torch.cat([input_images, data["normal"][:, :V_in, ...]], dim=2)
        if self.opt.input_coord:
            input_images = torch.cat([input_images, data["coord"][:, :V_in, ...]], dim=2)
        if self.opt.input_mr:
            input_images = torch.cat([input_images, data["mr"][:, :V_in, :2]], dim=2)

        # Get GS latents, KL divergence and ground-truth GS
        if latents is None or kl is None or gs is None:
            context = torch.no_grad() if use_tiny_decoder else torch.enable_grad()
            # Reconstruct & Encode
            with context:
                latents, kl, gs = self.get_gslatents(gsrecon, input_images, input_C2W, input_fxfycxcy, return_kl=True, return_gs=True)

        outputs["kl"] = kl / (sum(latents.shape[1:]))

        # Decode
        recon_gs = self.decode(latents, use_tiny_decoder)
        recon_gs = rearrange(recon_gs, "(b v) c h w -> b v c h w", v=V_in)
        gs = rearrange(gs, "(b v) c h w -> b v c h w", v=V_in)
        recon_model_outputs = {
            "rgb": recon_gs[:, :, :3, ...],
            "scale": recon_gs[:, :, 3:6, ...],
            "rotation": recon_gs[:, :, 6:10, ...],
            "opacity": recon_gs[:, :, 10:11, ...],
            "depth": recon_gs[:, :, 11:12, ...],
        }

        render_outputs = gsrecon.gs_renderer.render(recon_model_outputs, input_C2W, input_fxfycxcy, C2W, fxfycxcy)
        for k in render_outputs.keys():
            render_outputs[k] = render_outputs[k].to(dtype)
        render_images = render_outputs["image"]  # (B, V, 3, H, W)
        render_masks = render_outputs["alpha"]  # (B, V, 1, H, W)
        render_coords = render_outputs["coord"]  # (B, V, 3, H, W)
        render_normals = render_outputs["normal"]  # (B, V, 3, H, W)

        # For visualization
        outputs["images_render"] = render_images
        outputs["images_gt"] = images
        if self.opt.vis_coords:
            outputs["images_coord"] = render_coords
            if self.opt.load_coord:
                outputs["images_gt_coord"] = data["coord"]
        if self.opt.vis_normals:
            outputs["images_normal"] = render_normals
            if self.opt.load_normal:
                outputs["images_gt_normal"] = data["normal"]
        # if self.opt.input_mr:
        #     outputs["images_mr"] = data["mr"]

        ################################ Compute reconstruction losses/metrics ################################

        outputs["latent_mse"] = latent_mse = tF.mse_loss(gs, recon_gs)

        outputs["image_mse"] = image_mse = tF.mse_loss(images, render_images)
        outputs["mask_mse"] = mask_mse = tF.mse_loss(masks, render_masks)
        loss = image_mse + mask_mse

        # Depth & Normal
        if self.opt.coord_weight > 0:
            assert self.opt.load_coord
            outputs["coord_mse"] = coord_mse = tF.mse_loss(data["coord"], render_coords)
            loss += self.opt.coord_weight * coord_mse
        if self.opt.normal_weight > 0:
            assert self.opt.load_normal
            outputs["normal_cosim"] = normal_cosim = tF.cosine_similarity(data["normal"], render_normals, dim=2).mean()
            loss += self.opt.normal_weight * (1. - normal_cosim)

        # LPIPS
        if step < self.opt.lpips_warmup_start:
            lpips_weight = 0.
        elif step > self.opt.lpips_warmup_end:
            lpips_weight = self.opt.lpips_weight
        else:
            lpips_weight = self.opt.lpips_weight * (step - self.opt.lpips_warmup_start) / (
                self.opt.lpips_warmup_end - self.opt.lpips_warmup_start)
        if lpips_weight > 0.:
            outputs["lpips"] = lpips = lpips_loss(
                # Downsampled to at most 256 to reduce memory cost
                tF.interpolate(
                    rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1.,
                    (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False
                ) if self.opt.lpips_resize > 0 else rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1.,
                tF.interpolate(
                    rearrange(render_images, "b v c h w -> (b v) c h w") * 2. - 1.,
                    (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False
                ) if self.opt.lpips_resize > 0 else rearrange(render_images, "b v c h w -> (b v) c h w") * 2. - 1.,
            ).mean()
            loss += lpips_weight * lpips

        outputs["loss"] = self.opt.recon_weight * latent_mse + self.opt.render_weight * loss

        # Metric: PSNR, SSIM and LPIPS
        with torch.no_grad():
            outputs["psnr"] = -10 * torch.log10(torch.mean((images - render_images.detach()) ** 2))
            outputs["ssim"] = torch.tensor(calculate_ssim(
                (rearrange(images, "b v c h w -> (b v c) h w")
                    .cpu().float().numpy() * 255.).astype(np.uint8),
                (rearrange(render_images.detach(), "b v c h w -> (b v c) h w")
                    .cpu().float().numpy() * 255.).astype(np.uint8),
                channel_axis=0,
            ), device=images.device)
            if lpips_weight <= 0.:
                outputs["lpips"] = lpips = lpips_loss(
                    # Downsampled to at most 256 to reduce memory cost
                    tF.interpolate(
                        rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1.,
                        (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False
                    ) if self.opt.lpips_resize > 0 else rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1.,
                    tF.interpolate(
                        rearrange(render_images.detach(), "b v c h w -> (b v) c h w") * 2. - 1.,
                        (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False
                    ) if self.opt.lpips_resize > 0 else rearrange(render_images.detach(), "b v c h w -> (b v) c h w") * 2. - 1.,
                ).mean()

        return outputs

    def get_gslatents(self,
        gsrecon: GSRecon,
        input_images: Tensor,
        input_C2W: Tensor,
        input_fxfycxcy: Tensor,
        return_kl: bool = False,
        return_gs: bool = False,
    ) -> Union[Tuple[Tensor, Tensor], Tensor]:
        (B, V_in), chunk = input_images.shape[:2], self.opt.chunk_size

        # Reconstruction
        gs = []
        for i in range(0, B, chunk):
            gsrecon_outputs = gsrecon.forward_gaussians(
                input_images[i:min(B, i+chunk)],
                input_C2W[i:min(B, i+chunk)],
                input_fxfycxcy[i:min(B, i+chunk)],
            )
            _gs = torch.cat([
                gsrecon_outputs["rgb"],
                gsrecon_outputs["scale"],
                gsrecon_outputs["rotation"],
                gsrecon_outputs["opacity"],
                gsrecon_outputs["depth"],
            ], dim=2)  # (`chunk`, V_in, C=12, H, W)
            gs.append(_gs)
        gs = torch.cat(gs, dim=0)  # (B, V_in, C=12, H, W)
        gs = rearrange(gs, "b v c h w -> (b v) c h w")

        # GSVAE encoding
        latents, kl = [], 0.
        for i in range(0, B*V_in, chunk):
            _latents, _kl = self.encode(gs[i:min(B*V_in, i+chunk)], deterministic=(not self.training))  # (`chunk`, D=4, H', W')
            latents.append(_latents)
            kl += (_latents.shape[0] * _kl)
        latents = torch.cat(latents, dim=0)  # (B*V_in, D=4, H', W')
        kl /= latents.shape[0]

        results = [latents]
        if return_kl:
            results.append(kl)
        if return_gs:
            results.append(gs)
        if len(results) == 1:  # only return latents
            return results[0]
        else:
            return tuple(results)

    def decode_gslatents(self, latents: Tensor, use_tiny_decoder: bool = False) -> Dict[str, Tensor]:
        V_in = self.opt.num_input_views
        B, chunk = latents.shape[0] // self.opt.num_input_views, self.opt.chunk_size

        # GSVAE decoding
        recon_gs = []
        for i in range(0, B*V_in, chunk):
            _recon_gs = self.decode(latents[i:min(B*V_in, i+chunk)], use_tiny_decoder)  # (`chunk`, C=12, H, W)
            recon_gs.append(_recon_gs)
        recon_gs = torch.cat(recon_gs, dim=0)  # (B*V_in, C=12, H, W)
        recon_gs = rearrange(recon_gs, "(b v) c h w -> b v c h w", v=V_in)

        recon_gsrecon_outputs = {
            "rgb": recon_gs[:, :, :3, ...],
            "scale": recon_gs[:, :, 3:6, ...],
            "rotation": recon_gs[:, :, 6:10, ...],
            "opacity": recon_gs[:, :, 10:11, ...],
            "depth": recon_gs[:, :, 11:12, ...],
        }

        return recon_gsrecon_outputs

    def decode_and_render_gslatents(self,
        gsrecon: GSRecon,
        latents: Tensor,
        input_C2W: Tensor,
        input_fxfycxcy: Tensor,
        C2W: Optional[Tensor] = None,
        fxfycxcy: Optional[Tensor] = None,
        height: Optional[float] = None,
        width: Optional[float] = None,
        scaling_modifier: int = 1,
        opacity_threshold: float = 0.,
        use_tiny_decoder: bool = False,
    ) -> Dict[str, Tensor]:
        C2W = C2W if C2W is not None else input_C2W
        fxfycxcy = fxfycxcy if fxfycxcy is not None else input_fxfycxcy

        recon_gsrecon_outputs = self.decode_gslatents(latents, use_tiny_decoder)
        render_outputs = gsrecon.gs_renderer.render(
            recon_gsrecon_outputs,
            input_C2W, input_fxfycxcy, C2W, fxfycxcy,
            height=height, width=width,
            scaling_modifier=scaling_modifier,
            opacity_threshold=opacity_threshold,
        )
        return render_outputs  # (B, V, 3 or 1, H, W)

    def encode(self, gs: Tensor, deterministic=False) -> Tuple[Tensor, Tensor]:
        if self.opt.freeze_encoder or self.opt.use_tinyae:
            self.vae.encoder.eval()
            self.vae.quant_conv.eval()

        assert gs.ndim == 4  # (B*V, C=12, H, W)

        if not self.opt.use_tinyae:
            latent_dist: DiagonalGaussianDistribution = self.vae.encode(gs).latent_dist
            latents = latent_dist.sample() if not deterministic else latent_dist.mode()  # (B*V, D=4, H, W)
            kl = latent_dist.kl().mean()
        else:
            latents = self.vae.encode(gs).latents  # (B*V, D=4, H, W)
            kl = torch.zeros(1, dtype=latents.dtype, device=latents.device)  # dummy

        return latents, kl

    def decode(self, z: Tensor, use_tiny_decoder: bool = False) -> Tensor:
        if not hasattr(self, "tiny_decoder"):
            use_tiny_decoder = False

        if use_tiny_decoder:
            original_decoder = self.vae.decoder
            self.vae.decoder = self.tiny_decoder
            assert isinstance(self.vae.decoder, DecoderTiny)

            # NOTE: NOT exclude the origin `self.vae.post_quant_conv` for tiny decoder here
            # But we conduct full fine-tuning for VAE and tiny decoder, so it should be fine

            z = self.scaling_factor * (z - self.shift_factor)  # `AutoencoderTiny` uses scaled (and shifted) latents

        recon_gs = self.vae.decode(z).sample.clamp(-1., 1.)  # (B*V, C=12, H, W)

        # Change back to the original decoder
        if use_tiny_decoder:
            self.vae.decoder = original_decoder
            assert isinstance(self.vae.decoder, Decoder)

        return recon_gs