Spaces:
Running
on
Zero
Running
on
Zero
File size: 56,197 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
import warnings
warnings.filterwarnings("ignore") # ignore all warnings
import diffusers.utils.logging as diffusion_logging
diffusion_logging.set_verbosity_error() # ignore diffusers warnings
from typing import *
from torch import Tensor
from torch.nn.parallel import DistributedDataParallel
from accelerate.optimizer import AcceleratedOptimizer
from accelerate.scheduler import AcceleratedScheduler
from accelerate.data_loader import DataLoaderShard
import os
import argparse
import logging
import math
from collections import defaultdict
from packaging import version
import gc
from tqdm import tqdm
import wandb
import numpy as np
from skimage.metrics import structural_similarity as calculate_ssim
from lpips import LPIPS
import torch
import torch.nn.functional as tF
from einops import rearrange, repeat
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger as get_accelerate_logger
from accelerate import DataLoaderConfiguration, DeepSpeedPlugin
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.training_utils import compute_snr, compute_density_for_timestep_sampling, compute_loss_weighting_for_sd3
from src.options import opt_dict, Options
from src.data import GObjaverseParquetDataset, ParquetChunkDataSource, MultiEpochsChunkedDataLoader, yield_forever
from src.models import GSAutoencoderKL, GSRecon, get_optimizer, get_lr_scheduler
import src.utils.util as util
import src.utils.geo_util as geo_util
import src.utils.vis_util as vis_util
from extensions.diffusers_diffsplat import MyEMAModel, SD3TransformerMV2DModel, StableMVDiffusion3Pipeline
@torch.no_grad()
def log_validation(
dataloader, negative_prompt_embed, negative_pooled_prompt_embed, lpips_loss, gsrecon, gsvae, vae, transformer,
global_step, accelerator, args, opt: Options,
):
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(opt.pretrained_model_name_or_path, subfolder="scheduler")
pipeline = StableMVDiffusion3Pipeline(
text_encoder=None, tokenizer=None,
text_encoder_2=None, tokenizer_2=None,
text_encoder_3=None, tokenizer_3=None,
vae=vae, transformer=accelerator.unwrap_model(transformer),
scheduler=noise_scheduler,
)
pipeline.set_progress_bar_config(disable=True)
# pipeline.enable_xformers_memory_efficient_attention()
if args.seed >= 0:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
images_dictlist, metrics_dictlist = defaultdict(list), defaultdict(list)
val_progress_bar = tqdm(
range(len(dataloader)) if args.max_val_steps is None else range(args.max_val_steps),
desc=f"Validation",
ncols=125,
disable=not accelerator.is_main_process
)
for i, batch in enumerate(dataloader):
V_in, V_cond, V = opt.num_input_views, opt.num_cond_views, opt.num_views # TODO: not support V_cond > V_in by now
cond_idx = [0] # the first view must be in inputs
if V_cond > 1:
cond_idx += np.random.choice(range(1, V), V_cond-1, replace=False).tolist()
imgs_cond = batch["image"][:, cond_idx, ...] # (B, V_cond, 3, H, W)
B = imgs_cond.shape[0]
imgs_out = batch["image"] # (B, V, 3, H, W); for visualization and evaluation
imgs_out = rearrange(imgs_out, "b v c h w -> (b v) c h w")
prompt_embeds = batch["prompt_embed"] # (B, N, D)
negative_prompt_embeds = repeat(negative_prompt_embed.to(accelerator.device), "n d -> b n d", b=B)
pooled_prompt_embeds = batch["pooled_prompt_embed"] # (B, D)
negative_pooled_prompt_embeds = repeat(negative_pooled_prompt_embed.to(accelerator.device), "d -> b d", b=B)
C2W = batch["C2W"]
fxfycxcy = batch["fxfycxcy"]
input_C2W = C2W[:, :V_in, ...]
input_fxfycxcy = fxfycxcy[:, :V_in, ...]
cond_C2W = C2W[:, cond_idx,...]
cond_fxfycxcy = fxfycxcy[:, cond_idx,...]
# Plucker embeddings
if opt.input_concat_plucker:
H = W = opt.input_res
plucker, _ = geo_util.plucker_ray(H, W, input_C2W, input_fxfycxcy) # (B, V_in, 6, H, W)
if opt.view_concat_condition:
cond_plucker, _ = geo_util.plucker_ray(H, W, cond_C2W, cond_fxfycxcy) # (B, V_cond, 6, H, W)
plucker = torch.cat([cond_plucker, plucker], dim=1) # (B, V_cond+V_in, 6, H, W)
plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
else:
plucker = None
images_dictlist["gt"].append(imgs_out) # (B*V, C=3, H, W)
if opt.vis_coords and opt.load_coord:
coords_out = rearrange(batch["coord"], "b v c h w -> (b v) c h w") # (B*V, C=3, H, W)
images_dictlist["gt_coord"].append(coords_out)
if opt.vis_normals and opt.load_normal:
normals_out = rearrange(batch["normal"], "b v c h w -> (b v) c h w") # (B*V, C=3, H, W)
images_dictlist["gt_normal"].append(normals_out)
with torch.autocast("cuda", torch.bfloat16):
for guidance_scale in sorted(args.val_guidance_scales):
out = pipeline(
imgs_cond, num_inference_steps=opt.num_inference_steps, guidance_scale=guidance_scale,
output_type="latent", generator=generator,
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
plucker=plucker, num_views=V_in,
init_std=opt.init_std, init_noise_strength=opt.init_noise_strength, init_bg=opt.init_bg,
).images
# Rendering GS latents
out = out / gsvae.scaling_factor + gsvae.shift_factor
render_outputs = gsvae.decode_and_render_gslatents(gsrecon, out, input_C2W, input_fxfycxcy, C2W, fxfycxcy)
render_images = rearrange(render_outputs["image"], "b v c h w -> (b v) c h w") # (B*V, C=3, H, W)
images_dictlist[f"pred_cfg{guidance_scale:.1f}"].append(render_images)
if opt.vis_coords:
render_coords = rearrange(render_outputs["coord"], "b v c h w -> (b v) c h w") # (B*V, 3, H, W)
images_dictlist[f"pred_coord_cfg{guidance_scale:.1f}"].append(render_coords)
if opt.vis_normals:
render_normals = rearrange(render_outputs["normal"], "b v c h w -> (b v) c h w") # (B*V, 3, H, W)
images_dictlist[f"pred_normal_cfg{guidance_scale:.1f}"].append(render_normals)
# Decode to pseudo images
if opt.vis_pseudo_images:
out = (out - gsvae.shift_factor) * gsvae.scaling_factor / vae.config.scaling_factor + vae.config.shift_factor
images = vae.decode(out).sample.clamp(-1., 1.) * 0.5 + 0.5
images_dictlist[f"pred_image_cfg{guidance_scale:.1f}"].append(images) # (B*V_in, 3, H, W)
################################ Compute generation metrics ################################
lpips = lpips_loss(
# Downsampled to at most 256 to reduce memory cost
tF.interpolate(imgs_out * 2. - 1., (256, 256), mode="bilinear", align_corners=False),
tF.interpolate(render_images * 2. - 1., (256, 256), mode="bilinear", align_corners=False)
).mean()
psnr = -10. * torch.log10(tF.mse_loss(imgs_out, render_images))
ssim = torch.tensor(calculate_ssim(
(rearrange(imgs_out, "bv c h w -> (bv c) h w").cpu().float().numpy() * 255.).astype(np.uint8),
(rearrange(render_images, "bv c h w -> (bv c) h w").cpu().float().numpy() * 255.).astype(np.uint8),
channel_axis=0,
), device=render_images.device)
lpips = accelerator.gather_for_metrics(lpips.repeat(B)).mean()
psnr = accelerator.gather_for_metrics(psnr.repeat(B)).mean()
ssim = accelerator.gather_for_metrics(ssim.repeat(B)).mean()
metrics_dictlist[f"lpips_cfg{guidance_scale:.1f}"].append(lpips)
metrics_dictlist[f"psnr_cfg{guidance_scale:.1f}"].append(psnr)
metrics_dictlist[f"ssim_cfg{guidance_scale:.1f}"].append(ssim)
if opt.coord_weight > 0.:
assert opt.load_coord
coord_mse = tF.mse_loss(coords_out, render_coords)
coord_mse = accelerator.gather_for_metrics(coord_mse.repeat(B)).mean()
metrics_dictlist[f"coord_mse_cfg{guidance_scale:.1f}"].append(coord_mse)
if opt.normal_weight > 0.:
assert opt.load_normal
normal_cosim = tF.cosine_similarity(normals_out, render_normals, dim=2).mean()
normal_cosim = accelerator.gather_for_metrics(normal_cosim.repeat(B)).mean()
metrics_dictlist[f"normal_cosim_cfg{guidance_scale:.1f}"].append(normal_cosim)
# Only log the last (biggest) cfg metrics in the progress bar
val_logs = {
"lpips": lpips.item(),
"psnr": psnr.item(),
"ssim": ssim.item(),
}
val_progress_bar.set_postfix(**val_logs)
val_progress_bar.update(1)
if args.max_val_steps is not None and i == (args.max_val_steps - 1):
break
val_progress_bar.close()
if accelerator.is_main_process:
formatted_images = []
for k, v in images_dictlist.items(): # "gs_gt", "pred_cfg1.0", "pred_cfg3.0", ...
mvimages = torch.cat(v, dim=0) # (N*B*V, C, H, W)
mvimages = rearrange(mvimages, "(nb v) c h w -> nb v c h w", v=V if "image" not in k else V_in)
mvimages = mvimages[:min(mvimages.shape[0], 4), ...] # max show `4` samples; TODO: make it configurable
mvimages = rearrange(mvimages, "nb v c h w -> c (nb h) (v w)")
mvimages = vis_util.tensor_to_image(mvimages.detach())
formatted_images.append(wandb.Image(mvimages, caption=k))
wandb.log({"images/validation": formatted_images}, step=global_step)
for k, v in metrics_dictlist.items(): # "lpips_cfg1.0", "psnr_cfg3.0", ...
if "cfg1.0" in k:
wandb.log({f"validation_cfg1.0/{k}": torch.tensor(v).mean().item()}, step=global_step)
else:
wandb.log({f"validation/{k}": torch.tensor(v).mean().item()}, step=global_step)
def main():
PROJECT_NAME = "DiffSplat"
parser = argparse.ArgumentParser(
description="Train a diffusion model for 3D object generation",
)
parser.add_argument(
"--config_file",
type=str,
required=True,
help="Path to the config file"
)
parser.add_argument(
"--tag",
type=str,
required=True,
help="Tag that refers to the current experiment"
)
parser.add_argument(
"--output_dir",
type=str,
default="out",
help="Path to the output directory"
)
parser.add_argument(
"--hdfs_dir",
type=str,
default=None,
help="Path to the HDFS directory to save checkpoints"
)
parser.add_argument(
"--wandb_token_path",
type=str,
default="wandb/token",
help="Path to the WandB login token"
)
parser.add_argument(
"--resume_from_iter",
type=int,
default=None,
help="The iteration to load the checkpoint from"
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Seed for the PRNG"
)
parser.add_argument(
"--offline_wandb",
action="store_true",
help="Use offline WandB for experiment tracking"
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="The max iteration step for training"
)
parser.add_argument(
"--max_val_steps",
type=int,
default=1,
help="The max iteration step for validation"
)
parser.add_argument(
"--num_workers",
type=int,
default=32,
help="The number of processed spawned by the batch provider"
)
parser.add_argument(
"--pin_memory",
action="store_true",
help="Pin memory for the data loader"
)
parser.add_argument(
"--use_ema",
action="store_true",
help="Use EMA model for training"
)
parser.add_argument(
"--scale_lr",
action="store_true",
help="Scale lr with total batch size (base batch size: 256)"
)
parser.add_argument(
"--max_grad_norm",
type=float,
default=1.,
help="Max gradient norm for gradient clipping"
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass"
)
parser.add_argument(
"--mixed_precision",
type=str,
default="fp16",
choices=["no", "fp16", "bf16"],
help="Type of mixed precision training"
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help="Enable TF32 for faster training on Ampere GPUs"
)
parser.add_argument(
"--val_guidance_scales",
type=list,
nargs="+",
default=[1., 3., 7.5],
help="CFG scale used for validation"
)
parser.add_argument(
"--use_deepspeed",
action="store_true",
help="Use DeepSpeed for training"
)
parser.add_argument(
"--zero_stage",
type=int,
default=1,
choices=[1, 2, 3], # https://huggingface.co/docs/accelerate/usage_guides/deepspeed
help="ZeRO stage type for DeepSpeed"
)
parser.add_argument(
"--load_pretrained_gsrecon",
type=str,
default="gsrecon_gobj265k_cnp_even4",
help="Tag of a pretrained GSRecon in this project"
)
parser.add_argument(
"--load_pretrained_gsrecon_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSRecon checkpoint"
)
parser.add_argument(
"--load_pretrained_gsvae",
type=str,
default="gsvae_gobj265k_sd3",
help="Tag of a pretrained GSVAE in this project"
)
parser.add_argument(
"--load_pretrained_gsvae_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained GSVAE checkpoint"
)
parser.add_argument(
"--load_pretrained_model",
type=str,
default=None,
help="Tag of a pretrained MVTransformer in this project"
)
parser.add_argument(
"--load_pretrained_model_ckpt",
type=int,
default=-1,
help="Iteration of the pretrained MVTransformer checkpoint"
)
# Parse the arguments
args, extras = parser.parse_known_args()
args.val_guidance_scales = [float(x[0]) if isinstance(x, list) else float(x) for x in args.val_guidance_scales]
# Parse the config file
configs = util.get_configs(args.config_file, extras) # change yaml configs by `extras`
# Parse the option dict
opt = opt_dict[configs["opt_type"]]
if "opt" in configs:
for k, v in configs["opt"].items():
setattr(opt, k, v)
opt.__post_init__()
# Create an experiment directory using the `tag`
exp_dir = os.path.join(args.output_dir, args.tag)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
if args.hdfs_dir is not None:
args.project_hdfs_dir = args.hdfs_dir
args.hdfs_dir = os.path.join(args.hdfs_dir, args.tag)
os.system(f"hdfs dfs -mkdir -p {args.hdfs_dir}")
# Initialize the logger
logging.basicConfig(
format="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S",
level=logging.INFO
)
logger = get_accelerate_logger(__name__, log_level="INFO")
file_handler = logging.FileHandler(os.path.join(exp_dir, "log.txt")) # output to file
file_handler.setFormatter(logging.Formatter(
fmt="%(asctime)s - %(message)s",
datefmt="%Y/%m/%d %H:%M:%S"
))
logger.logger.addHandler(file_handler)
logger.logger.propagate = True # propagate to the root logger (console)
# Set DeepSpeed config
if args.use_deepspeed:
deepspeed_plugin = DeepSpeedPlugin(
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_clipping=args.max_grad_norm,
zero_stage=int(args.zero_stage),
offload_optimizer_device="cpu", # hard-coded here, TODO: make it configurable
)
else:
deepspeed_plugin = None
# Initialize the accelerator
accelerator = Accelerator(
project_dir=exp_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
split_batches=False, # batch size per GPU
dataloader_config=DataLoaderConfiguration(non_blocking=args.pin_memory),
deepspeed_plugin=deepspeed_plugin,
)
logger.info(f"Accelerator state:\n{accelerator.state}\n")
# Set the random seed
if args.seed >= 0:
accelerate.utils.set_seed(args.seed)
logger.info(f"You have chosen to seed([{args.seed}]) the experiment [{args.tag}]\n")
# Enable TF32 for faster training on Ampere GPUs
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
# Prepare dataset
if accelerator.is_local_main_process:
if not os.path.exists("/tmp/test_dataset"):
os.system(opt.dataset_setup_script)
accelerator.wait_for_everyone() # other processes wait for the main process
# Load the training and validation dataset
assert opt.file_dir_train is not None and opt.file_name_train is not None and \
opt.file_dir_test is not None and opt.file_name_test is not None
train_dataset = GObjaverseParquetDataset(
data_source=ParquetChunkDataSource(opt.file_dir_train, opt.file_name_train),
shuffle=True,
shuffle_buffer_size=-1, # `-1`: not shuffle actually
chunks_queue_max_size=1, # number of preloading chunks
# GObjaverse
opt=opt,
training=True,
)
val_dataset = GObjaverseParquetDataset(
data_source=ParquetChunkDataSource(opt.file_dir_test, opt.file_name_test),
shuffle=True, # shuffle for various visualization
shuffle_buffer_size=-1, # `-1`: not shuffle actually
chunks_queue_max_size=1, # number of preloading chunks
# GObjaverse
opt=opt,
training=False,
)
train_loader = MultiEpochsChunkedDataLoader(
train_dataset,
batch_size=configs["train"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
val_loader = MultiEpochsChunkedDataLoader(
val_dataset,
batch_size=configs["val"]["batch_size_per_gpu"],
num_workers=args.num_workers,
drop_last=True,
pin_memory=args.pin_memory,
)
logger.info(f"Load [{len(train_dataset)}] training samples and [{len(val_dataset)}] validation samples\n")
negative_prompt_embed = train_dataset.negative_prompt_embed
negative_pooled_prompt_embed = train_dataset.negative_pooled_prompt_embed
# Compute the effective batch size and scale learning rate
total_batch_size = configs["train"]["batch_size_per_gpu"] * \
accelerator.num_processes * args.gradient_accumulation_steps
configs["train"]["total_batch_size"] = total_batch_size
if args.scale_lr:
configs["optimizer"]["lr"] *= (total_batch_size / 256)
configs["lr_scheduler"]["max_lr"] = configs["optimizer"]["lr"]
# LPIPS loss
if accelerator.is_main_process:
_ = LPIPS(net="vgg")
del _
accelerator.wait_for_everyone() # wait for pretrained backbone weights to be downloaded
lpips_loss = LPIPS(net="vgg").to(accelerator.device)
lpips_loss = lpips_loss.requires_grad_(False)
lpips_loss.eval()
# GSRecon
gsrecon = GSRecon(opt)
gsrecon = gsrecon.requires_grad_(False)
gsrecon = gsrecon.eval()
# Initialize the model, optimizer and lr scheduler
in_channels = 16 # hard-coded for SD3
if opt.input_concat_plucker:
in_channels += 6
if opt.input_concat_binary_mask:
in_channels += 1
transformer_from_pretrained_kwargs = {
"sample_size": opt.input_res // 8, # `8` hard-coded for SD3
"in_channels": in_channels,
"zero_init_conv_in": opt.zero_init_conv_in,
"view_concat_condition": opt.view_concat_condition,
"input_concat_plucker": opt.input_concat_plucker,
"input_concat_binary_mask": opt.input_concat_binary_mask,
}
vae = AutoencoderKL.from_pretrained(opt.pretrained_model_name_or_path, subfolder="vae")
if args.load_pretrained_model is None:
transformer, loading_info = SD3TransformerMV2DModel.from_pretrained_new(opt.pretrained_model_name_or_path, subfolder="transformer",
low_cpu_mem_usage=False, ignore_mismatched_sizes=True, output_loading_info=True, **transformer_from_pretrained_kwargs)
logger.info(f"Loading info: {loading_info}\n")
else:
logger.info(f"Load MVTransformer EMA checkpoint from [{args.load_pretrained_model}] iteration [{args.load_pretrained_model_ckpt:06d}]\n")
args.load_pretrained_model_ckpt = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_model, "checkpoints"),
args.load_pretrained_model_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_model_ckpt),
None, # `None`: not load model ckpt here
accelerator, # manage the process states
)
path = f"out/{args.load_pretrained_model}/checkpoints/{args.load_pretrained_model_ckpt:06d}"
os.system(f"python3 extensions/merge_safetensors.py {path}/transformer_ema") # merge safetensors for loading
transformer, loading_info = SD3TransformerMV2DModel.from_pretrained_new(path, subfolder="transformer_ema",
low_cpu_mem_usage=False, ignore_mismatched_sizes=True, output_loading_info=True, **transformer_from_pretrained_kwargs)
logger.info(f"Loading info: {loading_info}\n")
gsvae = GSAutoencoderKL(opt)
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(opt.pretrained_model_name_or_path, subfolder="scheduler")
if args.use_ema:
ema_transformer = MyEMAModel(
transformer.parameters(),
model_cls=SD3TransformerMV2DModel,
model_config=transformer.config,
**configs["train"]["ema_kwargs"]
)
# Freeze VAE and GSVAE
vae.requires_grad_(False)
gsvae.requires_grad_(False)
vae.eval()
gsvae.eval()
trainable_module_names = []
if opt.trainable_modules is None:
transformer.requires_grad_(True)
else:
transformer.requires_grad_(False)
for name, module in transformer.named_modules():
for module_name in tuple(opt.trainable_modules.split(",")):
if module_name in name:
for params in module.parameters():
params.requires_grad = True
trainable_module_names.append(name)
logger.info(f"Trainable parameter names: {trainable_module_names}\n")
# transformer.enable_xformers_memory_efficient_attention() # use `tF.scaled_dot_product_attention` instead
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# Create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
if args.use_ema:
# NOTE: `pos_embed` of SD3 is not fixed parameters (register_buffer) as those in `PatchEmbed`,
# so `model = self.model_cls.from_config(self.model_config)` in `EMAModel`
# will initialize a wrong weight for `transformer.pos_embed.pos_embed`.
# Here, we manually handle this case for saving transformer EMA parameters.
# ema_transformer.save_pretrained(os.path.join(output_dir, "transformer_ema"))
from copy import deepcopy
model = deepcopy(accelerator.unwrap_model(transformer))
state_dict = ema_transformer.state_dict()
state_dict.pop("shadow_params", None)
model.register_to_config(**state_dict)
ema_transformer.copy_to(model.parameters())
model.save_pretrained(os.path.join(output_dir, "transformer_ema"))
del model
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "transformer"))
# Make sure to pop weight so that corresponding model is not saved again
if weights:
weights.pop()
def load_model_hook(models, input_dir):
if args.use_ema:
load_model = MyEMAModel.from_pretrained(os.path.join(input_dir, "transformer_ema"), SD3TransformerMV2DModel)
ema_transformer.load_state_dict(load_model.state_dict())
ema_transformer.to(accelerator.device)
del load_model
for _ in range(len(models)):
# Pop models so that they are not loaded again
model = models.pop()
# Load diffusers style into model
load_model = SD3TransformerMV2DModel.from_pretrained(input_dir, subfolder="transformer")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
if opt.grad_checkpoint:
transformer.enable_gradient_checkpointing()
params, params_lr_mult, names_lr_mult = [], [], []
for name, param in transformer.named_parameters():
if opt.name_lr_mult is not None:
for k in opt.name_lr_mult.split(","):
if k in name:
params_lr_mult.append(param)
names_lr_mult.append(name)
if name not in names_lr_mult:
params.append(param)
else:
params.append(param)
optimizer = get_optimizer(
params=[
{"params": params, "lr": configs["optimizer"]["lr"]},
{"params": params_lr_mult, "lr": configs["optimizer"]["lr"] * opt.lr_mult}
],
**configs["optimizer"]
)
logger.info(f"Learning rate x [{opt.lr_mult}] parameter names: {names_lr_mult}\n")
configs["lr_scheduler"]["total_steps"] = configs["train"]["epochs"] * math.ceil(
len(train_loader) // accelerator.num_processes / args.gradient_accumulation_steps) # only account updated steps
configs["lr_scheduler"]["total_steps"] *= accelerator.num_processes # for lr scheduler setting
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] *= accelerator.num_processes # for lr scheduler setting
lr_scheduler = get_lr_scheduler(optimizer=optimizer, **configs["lr_scheduler"])
configs["lr_scheduler"]["total_steps"] //= accelerator.num_processes # reset for multi-gpu
if "num_warmup_steps" in configs["lr_scheduler"]:
configs["lr_scheduler"]["num_warmup_steps"] //= accelerator.num_processes # reset for multi-gpu
# Load pretrained reconstruction and gsvae models
logger.info(f"Load GSVAE checkpoint from [{args.load_pretrained_gsvae}] iteration [{args.load_pretrained_gsvae_ckpt:06d}]\n")
gsvae = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsvae, "checkpoints"),
args.load_pretrained_gsvae_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsvae),
gsvae, accelerator
)
logger.info(f"Load GSRecon checkpoint from [{args.load_pretrained_gsrecon}] iteration [{args.load_pretrained_gsrecon_ckpt:06d}]\n")
gsrecon = util.load_ckpt(
os.path.join(args.output_dir, args.load_pretrained_gsrecon, "checkpoints"),
args.load_pretrained_gsrecon_ckpt,
None if args.hdfs_dir is None else os.path.join(args.project_hdfs_dir, args.load_pretrained_gsrecon),
gsrecon, accelerator
)
# Prepare everything with `accelerator`
transformer, optimizer, lr_scheduler, train_loader, val_loader = accelerator.prepare(
transformer, optimizer, lr_scheduler, train_loader, val_loader
)
# Set classes explicitly for everything
transformer: DistributedDataParallel
optimizer: AcceleratedOptimizer
lr_scheduler: AcceleratedScheduler
train_loader: DataLoaderShard
val_loader: DataLoaderShard
if args.use_ema:
ema_transformer.to(accelerator.device)
# For mixed precision training we cast all non-trainable weigths to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move `gsrecon`, `vae` and `gsvae` to gpu and cast to `weight_dtype`
gsrecon.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
gsvae.to(accelerator.device, dtype=weight_dtype)
# Training configs after distribution and accumulation setup
updated_steps_per_epoch = math.ceil(len(train_loader) / args.gradient_accumulation_steps)
total_updated_steps = configs["lr_scheduler"]["total_steps"]
if args.max_train_steps is None:
args.max_train_steps = total_updated_steps
assert configs["train"]["epochs"] * updated_steps_per_epoch == total_updated_steps
logger.info(f"Total batch size: [{total_batch_size}]")
logger.info(f"Learning rate: [{configs['optimizer']['lr']}]")
logger.info(f"Gradient Accumulation steps: [{args.gradient_accumulation_steps}]")
logger.info(f"Total epochs: [{configs['train']['epochs']}]")
logger.info(f"Total steps: [{total_updated_steps}]")
logger.info(f"Steps for updating per epoch: [{updated_steps_per_epoch}]")
logger.info(f"Steps for validation: [{len(val_loader)}]\n")
# (Optional) Load checkpoint
global_update_step = 0
if args.resume_from_iter is not None:
logger.info(f"Load checkpoint from iteration [{args.resume_from_iter}]\n")
# Download from HDFS
if not os.path.exists(os.path.join(ckpt_dir, f'{args.resume_from_iter:06d}')):
args.resume_from_iter = util.load_ckpt(
ckpt_dir,
args.resume_from_iter,
args.hdfs_dir,
None, # `None`: not load model ckpt here
accelerator, # manage the process states
)
# Load everything
accelerator.load_state(os.path.join(ckpt_dir, f"{args.resume_from_iter:06d}")) # torch < 2.4.0 here for `weights_only=False`
global_update_step = int(args.resume_from_iter)
# Save all experimental parameters and model architecture of this run to a file (args and configs)
if accelerator.is_main_process:
exp_params = util.save_experiment_params(args, configs, opt, exp_dir)
util.save_model_architecture(accelerator.unwrap_model(transformer), exp_dir)
# WandB logger
if accelerator.is_main_process:
if args.offline_wandb:
os.environ["WANDB_MODE"] = "offline"
with open(args.wandb_token_path, "r") as f:
os.environ["WANDB_API_KEY"] = f.read().strip()
wandb.init(
project=PROJECT_NAME, name=args.tag,
config=exp_params, dir=exp_dir,
resume=True
)
# Wandb artifact for logging experiment information
arti_exp_info = wandb.Artifact(args.tag, type="exp_info")
arti_exp_info.add_file(os.path.join(exp_dir, "params.yaml"))
arti_exp_info.add_file(os.path.join(exp_dir, "model.txt"))
arti_exp_info.add_file(os.path.join(exp_dir, "log.txt")) # only save the log before training
wandb.log_artifact(arti_exp_info)
def get_sigmas(timesteps: Tensor, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(dtype=dtype, device=accelerator.device)
schedule_timesteps = noise_scheduler.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero()[0].item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# Start training
logger.logger.propagate = False # not propagate to the root logger (console)
progress_bar = tqdm(
range(total_updated_steps),
initial=global_update_step,
desc="Training",
ncols=125,
disable=not accelerator.is_main_process
)
for batch in yield_forever(train_loader):
if global_update_step == args.max_train_steps:
progress_bar.close()
logger.logger.propagate = True # propagate to the root logger (console)
if accelerator.is_main_process:
wandb.finish()
logger.info("Training finished!\n")
return
transformer.train()
with accelerator.accumulate(transformer):
V_in, V_cond, V = opt.num_input_views, opt.num_cond_views, opt.num_views # TODO: not support V_cond > V_in by now
cond_idx = [0] # the first view must be in inputs
if V_cond > 1:
cond_idx += np.random.choice(range(1, V), V_cond-1, replace=False).tolist()
imgs_cond = batch["image"][:, cond_idx, ...] # (B, V_cond, 3, H, W)
B = imgs_cond.shape[0]
prompt_embeds = batch["prompt_embed"] # (B, N, D)
negative_prompt_embeds = repeat(negative_prompt_embed.to(accelerator.device), "n d -> b n d", b=B)
pooled_prompt_embeds = batch["pooled_prompt_embed"] # (B, D)
negative_pooled_prompt_embeds = repeat(negative_pooled_prompt_embed.to(accelerator.device), "d -> b d", b=B)
imgs_out = batch["image"][:, :V_in, ...]
C2W = batch["C2W"]
fxfycxcy = batch["fxfycxcy"]
(
imgs_cond, prompt_embeds, negative_prompt_embeds,
pooled_prompt_embeds, negative_pooled_prompt_embeds,
imgs_out, C2W, fxfycxcy
) = (
imgs_cond.to(weight_dtype),
prompt_embeds.to(weight_dtype),
negative_prompt_embeds.to(weight_dtype),
pooled_prompt_embeds.to(weight_dtype),
negative_pooled_prompt_embeds.to(weight_dtype),
imgs_out.to(weight_dtype),
C2W.to(weight_dtype),
fxfycxcy.to(weight_dtype),
)
input_C2W = C2W[:, :V_in, ...]
input_fxfycxcy = fxfycxcy[:, :V_in, ...]
cond_C2W = C2W[:, cond_idx, ...]
cond_fxfycxcy = fxfycxcy[:, cond_idx,...]
# (Optional) Plucker embeddings
if opt.input_concat_plucker:
H = W = opt.input_res
plucker, _ = geo_util.plucker_ray(H, W, input_C2W, input_fxfycxcy) # (B, V_in, 6, H, W)
if opt.view_concat_condition:
cond_plucker, _ = geo_util.plucker_ray(H, W, cond_C2W, cond_fxfycxcy) # (B, V_cond, 6, H, W)
plucker = torch.cat([cond_plucker, plucker], dim=1) # (B, V_cond+V_in, 6, H, W)
plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
else:
plucker = None
# VAE input image condition
if opt.view_concat_condition:
with torch.no_grad():
imgs_cond = rearrange(imgs_cond, "b v c h w -> (b v) c h w")
image_latents = vae.config.scaling_factor * (vae.encode(
imgs_cond * 2. - 1.).latent_dist.sample() - vae.config.shift_factor) # (B*V_cond, 4, H', W')
image_latents = rearrange(image_latents, "(b v) c h w -> b v c h w", v=V_cond) # (B, V_cond, 4, H', W')
# Get GS latents
if opt.input_normal:
imgs_out = torch.cat([imgs_out, batch["normal"][:, :V_in, ...].to(weight_dtype)], dim=2)
if opt.input_coord:
imgs_out = torch.cat([imgs_out, batch["coord"][:, :V_in, ...].to(weight_dtype)], dim=2)
with torch.no_grad():
latents = gsvae.scaling_factor * (gsvae.get_gslatents(gsrecon, imgs_out, input_C2W, input_fxfycxcy) - gsvae.shift_factor) # (B*V_in, 4, H', W')
noise = torch.randn_like(latents)
# For weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=opt.weighting_scheme,
batch_size=B,
logit_mean=opt.logit_mean,
logit_std=opt.logit_std,
mode_scale=opt.mode_scale,
)
indices = (u * noise_scheduler.config.num_train_timesteps).long()
timesteps = noise_scheduler.timesteps[indices].to(accelerator.device)
timesteps = repeat(timesteps, "b -> (b v)", v=V_in) # same noise scale for different views of the same object
sigmas = get_sigmas(timesteps, len(latents.shape), weight_dtype)
latent_model_input = noisy_latents = (1. - sigmas) * latents + sigmas * noise
if opt.cfg_dropout_prob > 0.:
# Drop a group of multi-view images as a whole
random_p = torch.rand(B, device=latents.device)
# Sample masks for the conditioning VAE images
if opt.view_concat_condition:
image_mask_dtype = image_latents.dtype
image_mask = 1 - (
(random_p >= opt.cfg_dropout_prob).to(image_mask_dtype)
* (random_p < 3 * opt.cfg_dropout_prob).to(image_mask_dtype)
) # actual dropout rate is 2 * `cfg.condition_drop_rate`
image_mask = image_mask.reshape(B, 1, 1, 1, 1)
# Final VAE image conditioning
image_latents = image_mask * image_latents
# Sample masks for the conditioning text prompts
text_mask_dtype = prompt_embeds.dtype
text_mask = 1 - (
(random_p < 2 * opt.cfg_dropout_prob).to(text_mask_dtype)
) # actual dropout rate is 2 * `cfg.condition_drop_rate`
text_mask = text_mask.reshape(B, 1, 1)
# Final text conditioning
prompt_embeds = text_mask * prompt_embeds + (1 - text_mask) * negative_prompt_embeds
# Final pooled text conditioning
text_mask = text_mask.reshape(B, 1)
pooled_prompt_embeds = text_mask * pooled_prompt_embeds + (1 - text_mask) * negative_pooled_prompt_embeds
# Concatenate input latents with others
latent_model_input = rearrange(latent_model_input, "(b v) c h w -> b v c h w", v=V_in)
if opt.view_concat_condition:
latent_model_input = torch.cat([image_latents, latent_model_input], dim=1) # (B, V_in+V_cond, 4, H', W')
if opt.input_concat_plucker:
plucker = tF.interpolate(plucker, size=latent_model_input.shape[-2:], mode="bilinear", align_corners=False)
plucker = rearrange(plucker, "(b v) c h w -> b v c h w", v=V_in + (V_cond if opt.view_concat_condition else 0))
latent_model_input = torch.cat([latent_model_input, plucker], dim=2) # (B, V_in(+V_cond), 4+6, H', W')
plucker = rearrange(plucker, "b v c h w -> (b v) c h w")
if opt.input_concat_binary_mask:
if opt.view_concat_condition:
latent_model_input = torch.cat([
torch.cat([latent_model_input[:, :V_cond, ...], torch.zeros_like(latent_model_input[:, :V_cond, 0:1, ...])], dim=2),
torch.cat([latent_model_input[:, V_cond:, ...], torch.ones_like(latent_model_input[:, V_cond:, 0:1, ...])], dim=2),
], dim=1) # (B, V_in+V_cond, 4+6+1, H', W')
else:
latent_model_input = torch.cat([
torch.cat([latent_model_input, torch.ones_like(latent_model_input[:, :, 0:1, ...])], dim=2),
], dim=1) # (B, V_in, 4+6+1, H', W')
latent_model_input = rearrange(latent_model_input, "b v c h w -> (b v) c h w")
timesteps_input = rearrange(timesteps, "(b v) -> b v", v=V_in)[:, 0] # (B,)
model_pred = transformer(
hidden_states=latent_model_input,
timestep=timesteps_input,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=dict(
num_views=opt.num_input_views + (V_cond if opt.view_concat_condition else 0),
),
).sample
# Only keep the noise prediction for the latents
if opt.view_concat_condition:
model_pred = rearrange(model_pred, "(b v) c h w -> b v c h w", v=V_in+V_cond)
model_pred = rearrange(model_pred[:, V_cond:, ...], "b v c h w -> (b v) c h w")
if opt.precondition_outputs: # Section 5 of https://arxiv.org/abs/2206.00364
model_pred = model_pred * (-sigmas) + noisy_latents # predicted x_0
target = latents
else: # flow matching
target = noise - latents
# For these weighting schemes use a uniform timestep sampling, so post-weight the loss
weighting = compute_loss_weighting_for_sd3(opt.weighting_scheme, sigmas)
loss = weighting * tF.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = rearrange(loss, "(b v) c h w -> b v c h w", v=V_in)
loss = loss.mean(dim=list(range(1, len(loss.shape))))
# Rendering loss
use_rendering_loss = np.random.rand() < opt.rendering_loss_prob
if use_rendering_loss:
# Get predicted x_0
if opt.precondition_outputs:
pred_original_latents = model_pred
else:
pred_original_latents = model_pred * (-sigmas) + noisy_latents
# Render the predicted latents
pred_original_latents = pred_original_latents.to(weight_dtype)
pred_original_latents = pred_original_latents / gsvae.scaling_factor + gsvae.shift_factor
pred_render_outputs = gsvae.decode_and_render_gslatents(
gsrecon, pred_original_latents, input_C2W, input_fxfycxcy, C2W, fxfycxcy,
use_tiny_decoder=opt.use_tiny_decoder,
) # (B, V, 3 or 1, H, W)
image_mse = tF.mse_loss(batch["image"], pred_render_outputs["image"], reduction="none")
mask_mse = tF.mse_loss(batch["mask"], pred_render_outputs["alpha"], reduction="none")
render_loss = image_mse + mask_mse # (B, V, C, H, W)
# Depth & Normal
if opt.coord_weight > 0:
assert opt.load_coord
coord_mse = tF.mse_loss(batch["coord"], pred_render_outputs["coord"], reduction="none")
render_loss += opt.coord_weight * coord_mse # (B, V, C, H, W)
else:
coord_mse = None
if opt.normal_weight > 0:
assert opt.load_normal
normal_cosim = tF.cosine_similarity(batch["normal"], pred_render_outputs["normal"], dim=2).unsqueeze(2)
render_loss += opt.normal_weight * (1. - normal_cosim) # (B, V, C, H, W)
else:
normal_cosim = None
# LPIPS
if opt.lpips_weight > 0.:
lpips, chunk = [], opt.chunk_size
for i in range(B*V):
_lpips = lpips_loss(
# Downsampled to at most 256 to reduce memory cost
tF.interpolate(
rearrange(batch["image"], "b v c h w -> (b v) c h w")[i:min(B*V, i+chunk), ...] * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
),
tF.interpolate(
rearrange(pred_render_outputs["image"], "b v c h w -> (b v) c h w")[i:min(B*V, i+chunk), ...] * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
)
) # (`chunk`, 1, 1, 1)
lpips.append(_lpips)
lpips = torch.cat(lpips, dim=0) # (B*V, 1, 1, 1)
lpips = rearrange(lpips, "(b v) c h w -> b v c h w", v=V)
render_loss += opt.lpips_weight * lpips # (B, V, C, H, W)
render_loss = render_loss.mean(dim=list(range(1, len(render_loss.shape)))) # (B,)
if opt.snr_gamma_rendering > 0.:
timesteps = rearrange(timesteps, "(b v) -> b v", v=V_in)[:, 0] # (B,)
snr = compute_snr(noise_scheduler, timesteps)
mse_loss_weights = torch.stack([snr, opt.snr_gamma_rendering * torch.ones_like(timesteps)], dim=1).min(dim=1)[0]
render_loss = mse_loss_weights * render_loss
loss = opt.diffusion_weight * loss + opt.render_weight * render_loss # (B,)
# Metric: PNSR, SSIM and LPIPS
with torch.no_grad():
psnr = -10 * torch.log10(torch.mean((batch["image"] - pred_render_outputs["image"].detach()) ** 2))
ssim = torch.tensor(calculate_ssim(
(rearrange(batch["image"], "b v c h w -> (b v c) h w")
.cpu().float().numpy() * 255.).astype(np.uint8),
(rearrange(pred_render_outputs["image"].detach(), "b v c h w -> (b v c) h w")
.cpu().float().numpy() * 255.).astype(np.uint8),
channel_axis=0,
), device=batch["image"].device)
if opt.lpips_weight <= 0.:
lpips = lpips_loss(
# Downsampled to at most 256 to reduce memory cost
tF.interpolate(
rearrange(batch["image"], "b v c h w -> (b v) c h w") * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
),
tF.interpolate(
rearrange(pred_render_outputs["image"].detach(), "b v c h w -> (b v) c h w") * 2. - 1.,
(256, 256), mode="bilinear", align_corners=False
)
)
# Backpropagate
accelerator.backward(loss.mean())
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
# Gather the losses across all processes for logging (if we use distributed training)
loss = accelerator.gather(loss.detach()).mean()
if use_rendering_loss:
psnr = accelerator.gather(psnr.detach()).mean()
ssim = accelerator.gather(ssim.detach()).mean()
lpips = accelerator.gather(lpips.detach()).mean()
render_loss = accelerator.gather(render_loss.detach()).mean()
if coord_mse is not None:
coord_mse = accelerator.gather(coord_mse.detach()).mean()
if normal_cosim is not None:
normal_cosim = accelerator.gather(normal_cosim.detach()).mean()
logs = {
"loss": loss.item(),
"lr": lr_scheduler.get_last_lr()[0]
}
if args.use_ema:
ema_transformer.step(transformer.parameters())
logs.update({"ema": ema_transformer.cur_decay_value})
if use_rendering_loss:
logs.update({"render_loss": render_loss.item()})
progress_bar.set_postfix(**logs)
progress_bar.update(1)
global_update_step += 1
logger.info(
f"[{global_update_step:06d} / {total_updated_steps:06d}] " +
f"loss: {logs['loss']:.4f}, lr: {logs['lr']:.2e}" +
f", ema: {logs['ema']:.4f}" if args.use_ema else "" +
f", render: {logs['render_loss']:.4f}" if use_rendering_loss else ""
)
# Log the training progress
if global_update_step % configs["train"]["log_freq"] == 0 or global_update_step == 1 \
or global_update_step % updated_steps_per_epoch == 0: # last step of an epoch
if accelerator.is_main_process:
wandb.log({
"training/loss": logs["loss"],
"training/lr": logs["lr"],
}, step=global_update_step)
if args.use_ema:
wandb.log({
"training/ema": logs["ema"]
}, step=global_update_step)
if use_rendering_loss:
wandb.log({
"training/psnr": psnr.item(),
"training/ssim": ssim.item(),
"training/lpips": lpips.item(),
"training/render_loss": logs["render_loss"]
}, step=global_update_step)
if coord_mse is not None:
wandb.log({
"training/coord_mse": coord_mse.item()
}, step=global_update_step)
if normal_cosim is not None:
wandb.log({
"training/normal_cosim": normal_cosim.item()
}, step=global_update_step)
# Save checkpoint
if (global_update_step % configs["train"]["save_freq"] == 0 # 1. every `save_freq` steps
or global_update_step % (configs["train"]["save_freq_epoch"] * updated_steps_per_epoch) == 0 # 2. every `save_freq_epoch` epochs
or global_update_step == total_updated_steps): # 3. last step of an epoch
gc.collect()
if accelerator.distributed_type == accelerate.utils.DistributedType.DEEPSPEED:
# DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
elif accelerator.is_main_process:
accelerator.save_state(os.path.join(ckpt_dir, f"{global_update_step:06d}"))
accelerator.wait_for_everyone() # ensure all processes have finished saving
if accelerator.is_main_process:
if args.hdfs_dir is not None:
util.save_ckpt(ckpt_dir, global_update_step, args.hdfs_dir)
gc.collect()
# Evaluate on the validation set
if (global_update_step == 1
or (global_update_step % configs["train"]["early_eval_freq"] == 0 and
global_update_step < configs["train"]["early_eval"]) # 1. more frequently at the beginning
or global_update_step % configs["train"]["eval_freq"] == 0 # 2. every `eval_freq` steps
or global_update_step % (configs["train"]["eval_freq_epoch"] * updated_steps_per_epoch) == 0 # 3. every `eval_freq_epoch` epochs
or global_update_step == total_updated_steps): # 4. last step of an epoch
# Visualize images for rendering loss
if accelerator.is_main_process and use_rendering_loss:
train_vis_dict = {
"images_render": pred_render_outputs["image"], # (B, V, 3, H, W)
"images_gt": batch["image"], # (B, V, 3, H, W)
}
if opt.vis_coords:
train_vis_dict.update({
"images_coord": pred_render_outputs["coord"], # (B, V, 3, H, W)
})
if opt.load_coord:
train_vis_dict.update({
"images_gt_coord": batch["coord"] # (B, V, 3, H, W)
})
if opt.vis_normals:
train_vis_dict.update({
"images_normal": pred_render_outputs["normal"], # (B, V, 3, H, W)
})
if opt.load_normal:
train_vis_dict.update({
"images_gt_normal": batch["normal"] # (B, V, 3, H, W)
})
wandb.log({
"images/training": vis_util.wandb_mvimage_log(train_vis_dict)
}, step=global_update_step)
torch.cuda.empty_cache()
gc.collect()
# Use EMA parameters for evaluation
if args.use_ema:
# Store the Transformer parameters temporarily and load the EMA parameters to perform inference
ema_transformer.store(transformer.parameters())
ema_transformer.copy_to(transformer.parameters())
transformer.eval()
log_validation(
val_loader,
negative_prompt_embed,
negative_pooled_prompt_embed,
lpips_loss,
gsrecon,
gsvae,
vae,
transformer,
global_update_step,
accelerator,
args,
opt,
)
if args.use_ema:
# Switch back to the original Transformer parameters
ema_transformer.restore(transformer.parameters())
torch.cuda.empty_cache()
gc.collect()
if __name__ == "__main__":
main()
|