Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,532 Bytes
476e0f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from typing import *
from torch import Tensor
import torch
import torch.nn.functional as tF
def normalize_normals(normals: Tensor, C2W: Tensor, i: int = 0) -> Tensor:
"""Normalize a batch of multi-view `normals` by the `i`-th view.
Inputs:
- `normals`: (B, V, 3, H, W)
- `C2W`: (B, V, 4, 4)
- `i`: the index of the view to normalize by
Outputs:
- `normalized_normals`: (B, V, 3, H, W)
"""
_, _, R, C = C2W.shape # (B, V, 4, 4)
assert R == C == 4
_, _, CC, _, _ = normals.shape # (B, V, 3, H, W)
assert CC == 3
dtype = normals.dtype
normals = normals.clone().float()
transform = torch.inverse(C2W[:, i, :3, :3]) # (B, 3, 3)
return torch.einsum("brc,bvchw->bvrhw", transform, normals).to(dtype) # (B, V, 3, H, W)
def normalize_C2W(C2W: Tensor, i: int = 0, norm_radius: float = 0.) -> Tensor:
"""Normalize a batch of multi-view `C2W` by the `i`-th view.
Inputs:
- `C2W`: (B, V, 4, 4)
- `i`: the index of the view to normalize by
- `norm_radius`: the normalization radius
Outputs:
- `normalized_C2W`: (B, V, 4, 4)
"""
_, _, R, C = C2W.shape # (B, V, 4, 4)
assert R == C == 4
device, dtype = C2W.device, C2W.dtype
C2W = C2W.clone().float()
if abs(norm_radius) > 0.:
radius = torch.norm(C2W[:, i, :3, 3], dim=1) # (B,)
C2W[:, :, :3, 3] *= (norm_radius / radius.unsqueeze(1).unsqueeze(2))
# The `i`-th view is normalized to a canonical matrix as the reference view
transform = torch.tensor([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, norm_radius],
[0, 0, 0, 1] # canonical c2w in OpenGL world convention
], dtype=torch.float32, device=device) @ torch.inverse(C2W[:, i, ...]) # (B, 4, 4)
return (transform.unsqueeze(1) @ C2W).to(dtype) # (B, V, 4, 4)
def unproject_depth(depth_map: Tensor, C2W: Tensor, fxfycxcy: Tensor) -> Tensor:
"""Unproject depth map to 3D world coordinate.
Inputs:
- `depth_map`: (B, V, H, W)
- `C2W`: (B, V, 4, 4)
- `fxfycxcy`: (B, V, 4)
Outputs:
- `xyz_world`: (B, V, 3, H, W)
"""
device, dtype = depth_map.device, depth_map.dtype
B, V, H, W = depth_map.shape
depth_map = depth_map.reshape(B*V, H, W).float()
C2W = C2W.reshape(B*V, 4, 4).float()
fxfycxcy = fxfycxcy.reshape(B*V, 4).float()
K = torch.zeros(B*V, 3, 3, dtype=torch.float32, device=device)
K[:, 0, 0] = fxfycxcy[:, 0]
K[:, 1, 1] = fxfycxcy[:, 1]
K[:, 0, 2] = fxfycxcy[:, 2]
K[:, 1, 2] = fxfycxcy[:, 3]
K[:, 2, 2] = 1
y, x = torch.meshgrid(torch.arange(H), torch.arange(W), indexing="ij") # OpenCV/COLMAP camera convention
y = y.to(device).unsqueeze(0).repeat(B*V, 1, 1) / (H-1)
x = x.to(device).unsqueeze(0).repeat(B*V, 1, 1) / (W-1)
# NOTE: To align with `plucker_ray(bug=False)`, should be:
# y = (y.to(device).unsqueeze(0).repeat(B*V, 1, 1) + 0.5) / H
# x = (x.to(device).unsqueeze(0).repeat(B*V, 1, 1) + 0.5) / W
xyz_map = torch.stack([x, y, torch.ones_like(x)], axis=-1) * depth_map[..., None]
xyz = xyz_map.view(B*V, -1, 3)
# Get point positions in camera coordinate
xyz = torch.matmul(xyz, torch.transpose(torch.inverse(K), 1, 2))
xyz_map = xyz.view(B*V, H, W, 3)
# Transform pts from camera to world coordinate
xyz_homo = torch.ones((B*V, H, W, 4), device=device)
xyz_homo[..., :3] = xyz_map
xyz_world = torch.bmm(C2W, xyz_homo.reshape(B*V, -1, 4).permute(0, 2, 1))[:, :3, ...].to(dtype) # (B*V, 3, H*W)
xyz_world = xyz_world.reshape(B, V, 3, H, W)
return xyz_world
def plucker_ray(h: int, w: int, C2W: Tensor, fxfycxcy: Tensor, bug: bool = True) -> Tuple[Tensor, Tuple[Tensor, Tensor]]:
"""Get Plucker ray embeddings.
Inputs:
- `h`: image height
- `w`: image width
- `C2W`: (B, V, 4, 4)
- `fxfycxcy`: (B, V, 4)
Outputs:
- `plucker`: (B, V, 6, `h`, `w`)
- `ray_o`: (B, V, 3, `h`, `w`)
- `ray_d`: (B, V, 3, `h`, `w`)
"""
device, dtype = C2W.device, C2W.dtype
B, V = C2W.shape[:2]
C2W = C2W.reshape(B*V, 4, 4).float()
fxfycxcy = fxfycxcy.reshape(B*V, 4).float()
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij") # OpenCV/COLMAP camera convention
y, x = y.to(device), x.to(device)
if bug: # BUG !!! same here: https://github.com/camenduru/GRM/blob/master/model/visual_encoder/vit_gs.py#L85
y = y[None, :, :].expand(B*V, -1, -1).reshape(B*V, -1) / (h - 1)
x = x[None, :, :].expand(B*V, -1, -1).reshape(B*V, -1) / (w - 1)
x = (x + 0.5 - fxfycxcy[:, 2:3]) / fxfycxcy[:, 0:1]
y = (y + 0.5 - fxfycxcy[:, 3:4]) / fxfycxcy[:, 1:2]
else:
y = (y[None, :, :].expand(B*V, -1, -1).reshape(B*V, -1) + 0.5) / h
x = (x[None, :, :].expand(B*V, -1, -1).reshape(B*V, -1) + 0.5) / w
x = (x - fxfycxcy[:, 2:3]) / fxfycxcy[:, 0:1]
y = (y - fxfycxcy[:, 3:4]) / fxfycxcy[:, 1:2]
z = torch.ones_like(x)
ray_d = torch.stack([x, y, z], dim=2) # (B*V, h*w, 3)
ray_d = torch.bmm(ray_d, C2W[:, :3, :3].transpose(1, 2)) # (B*V, h*w, 3)
ray_d = ray_d / torch.norm(ray_d, dim=2, keepdim=True) # (B*V, h*w, 3)
ray_o = C2W[:, :3, 3][:, None, :].expand_as(ray_d) # (B*V, h*w, 3)
ray_o = ray_o.reshape(B, V, h, w, 3).permute(0, 1, 4, 2, 3)
ray_d = ray_d.reshape(B, V, h, w, 3).permute(0, 1, 4, 2, 3)
plucker = torch.cat([torch.cross(ray_o, ray_d, dim=2).to(dtype), ray_d.to(dtype)], dim=2)
return plucker, (ray_o, ray_d)
def orbit_camera(
elevs: Tensor, azims: Tensor, radius: Optional[Tensor] = None,
is_degree: bool = True,
target: Optional[Tensor] = None,
opengl: bool=True,
) -> Tensor:
"""Construct a camera pose matrix orbiting a target with elevation & azimuth angle.
Inputs:
- `elevs`: (B,); elevation in (-90, 90), from +y to -y is (-90, 90)
- `azims`: (B,); azimuth in (-180, 180), from +z to +x is (0, 90)
- `radius`: (B,); camera radius; if None, default to 1.
- `is_degree`: bool; whether the input angles are in degree
- `target`: (B, 3); look-at target position
- `opengl`: bool; whether to use OpenGL convention
Outputs:
- `C2W`: (B, 4, 4); camera pose matrix
"""
device, dtype = elevs.device, elevs.dtype
if radius is None:
radius = torch.ones_like(elevs)
assert elevs.shape == azims.shape == radius.shape
if target is None:
target = torch.zeros(elevs.shape[0], 3, device=device, dtype=dtype)
if is_degree:
elevs = torch.deg2rad(elevs)
azims = torch.deg2rad(azims)
x = radius * torch.cos(elevs) * torch.sin(azims)
y = - radius * torch.sin(elevs)
z = radius * torch.cos(elevs) * torch.cos(azims)
camposes = torch.stack([x, y, z], dim=1) + target # (B, 3)
R = look_at(camposes, target, opengl=opengl) # (B, 3, 3)
C2W = torch.cat([R, camposes[:, :, None]], dim=2) # (B, 3, 4)
C2W = torch.cat([C2W, torch.zeros_like(C2W[:, :1, :])], dim=1) # (B, 4, 4)
C2W[:, 3, 3] = 1.
return C2W
def look_at(camposes: Tensor, targets: Tensor, opengl: bool = True) -> Tensor:
"""Construct batched pose rotation matrices by look-at.
Inputs:
- `camposes`: (B, 3); camera positions
- `targets`: (B, 3); look-at targets
- `opengl`: whether to use OpenGL convention
Outputs:
- `R`: (B, 3, 3); normalized camera pose rotation matrices
"""
device, dtype = camposes.device, camposes.dtype
if not opengl: # OpenCV convention
# forward is camera -> target
forward_vectors = tF.normalize(targets - camposes, dim=-1)
up_vectors = torch.tensor([0., 1., 0.], device=device, dtype=dtype)[None, :].expand_as(forward_vectors)
right_vectors = tF.normalize(torch.cross(forward_vectors, up_vectors), dim=-1)
up_vectors = tF.normalize(torch.cross(right_vectors, forward_vectors), dim=-1)
else:
# forward is target -> camera
forward_vectors = tF.normalize(camposes - targets, dim=-1)
up_vectors = torch.tensor([0., 1., 0.], device=device, dtype=dtype)[None, :].expand_as(forward_vectors)
right_vectors = tF.normalize(torch.cross(up_vectors, forward_vectors), dim=-1)
up_vectors = tF.normalize(torch.cross(forward_vectors, right_vectors), dim=-1)
R = torch.stack([right_vectors, up_vectors, forward_vectors], dim=-1)
return R
|