Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact george.drettakis@inria.fr | |
# | |
import torch | |
import math | |
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer | |
from scene.gaussian_model import GaussianModel | |
from utils.sh_utils import eval_sh | |
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, kernel_size, scaling_modifier = 1.0, require_coord : bool = True, require_depth : bool = True): | |
""" | |
Render the scene. | |
Background tensor (bg_color) must be on GPU! | |
""" | |
# Set up rasterization configuration | |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0 | |
try: | |
screenspace_points.retain_grad() | |
except: | |
pass | |
raster_settings = GaussianRasterizationSettings( | |
image_height=int(viewpoint_camera.image_height), | |
image_width=int(viewpoint_camera.image_width), | |
tanfovx=tanfovx, | |
tanfovy=tanfovy, | |
kernel_size = kernel_size, | |
bg=bg_color, | |
scale_modifier=scaling_modifier, | |
viewmatrix=viewpoint_camera.world_view_transform, | |
projmatrix=viewpoint_camera.full_proj_transform, | |
sh_degree=pc.active_sh_degree, | |
campos=viewpoint_camera.camera_center, | |
prefiltered=False, | |
require_coord = require_coord, | |
require_depth = require_depth, | |
debug=pipe.debug | |
) | |
rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
means3D = pc.get_xyz | |
means2D = screenspace_points | |
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from | |
# scaling / rotation by the rasterizer. | |
scales = None | |
rotations = None | |
cov3D_precomp = None | |
scales, opacity = pc.get_scaling_n_opacity_with_3D_filter | |
rotations = pc.get_rotation | |
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors | |
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. | |
shs = pc.get_features | |
colors_precomp = None | |
rendered_image, radii, rendered_expected_coord, rendered_median_coord, rendered_expected_depth, rendered_median_depth, rendered_alpha, rendered_normal = rasterizer( | |
means3D = means3D, | |
means2D = means2D, | |
shs = shs, | |
colors_precomp = colors_precomp, | |
opacities = opacity, | |
scales = scales, | |
rotations = rotations, | |
cov3D_precomp = cov3D_precomp) | |
# Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
# They will be excluded from value updates used in the splitting criteria. | |
return {"render": rendered_image, | |
"mask": rendered_alpha, | |
"expected_coord": rendered_expected_coord, | |
"median_coord": rendered_median_coord, | |
"expected_depth": rendered_expected_depth, | |
"median_depth": rendered_median_depth, | |
"viewspace_points": means2D, | |
"visibility_filter" : radii > 0, | |
"radii": radii, | |
"normal":rendered_normal, | |
} | |
# integration is adopted from GOF for marching tetrahedra https://github.com/autonomousvision/gaussian-opacity-fields/blob/main/gaussian_renderer/__init__.py | |
def integrate(points3D, viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, kernel_size : float, scaling_modifier = 1.0, override_color = None): | |
""" | |
integrate Gaussians to the points, we also render the image for visual comparison. | |
Background tensor (bg_color) must be on GPU! | |
""" | |
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means | |
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0 | |
try: | |
screenspace_points.retain_grad() | |
except: | |
pass | |
# Set up rasterization configuration | |
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5) | |
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5) | |
raster_settings = GaussianRasterizationSettings( | |
image_height=int(viewpoint_camera.image_height), | |
image_width=int(viewpoint_camera.image_width), | |
tanfovx=tanfovx, | |
tanfovy=tanfovy, | |
kernel_size = kernel_size, | |
bg=bg_color, | |
scale_modifier=scaling_modifier, | |
viewmatrix=viewpoint_camera.world_view_transform, | |
projmatrix=viewpoint_camera.full_proj_transform, | |
sh_degree=pc.active_sh_degree, | |
campos=viewpoint_camera.camera_center, | |
prefiltered=False, | |
debug=pipe.debug, | |
require_depth = True, | |
require_coord=True | |
) | |
rasterizer = GaussianRasterizer(raster_settings=raster_settings) | |
means3D = pc.get_xyz | |
means2D = screenspace_points | |
opacity = pc.get_opacity_with_3D_filter | |
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from | |
# scaling / rotation by the rasterizer. | |
scales = None | |
rotations = None | |
cov3D_precomp = None | |
if pipe.compute_cov3D_python: | |
cov3D_precomp = pc.get_covariance(scaling_modifier) | |
else: | |
scales = pc.get_scaling_with_3D_filter | |
rotations = pc.get_rotation | |
depth_plane_precomp = None | |
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors | |
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer. | |
shs = None | |
colors_precomp = None | |
if override_color is None: | |
if pipe.convert_SHs_python: | |
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2) | |
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1)) | |
# # we local direction | |
# cam_pos_local = view2gaussian_precomp[:, 3, :3] | |
# cam_pos_local_scaled = cam_pos_local / scales | |
# dir_pp = -cam_pos_local_scaled | |
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True) | |
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized) | |
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0) | |
else: | |
shs = pc.get_features | |
else: | |
colors_precomp = override_color | |
# Rasterize visible Gaussians to image, obtain their radii (on screen). | |
rendered_image, alpha_integrated, color_integrated, point_coordinate, point_sdf, radii = rasterizer.integrate( | |
points3D = points3D, | |
means3D = means3D, | |
means2D = means2D, | |
shs = shs, | |
colors_precomp = colors_precomp, | |
opacities = opacity, | |
scales = scales, | |
rotations = rotations, | |
cov3D_precomp = cov3D_precomp, | |
view2gaussian_precomp=depth_plane_precomp) | |
# Those Gaussians that were frustum culled or had a radius of 0 were not visible. | |
# They will be excluded from value updates used in the splitting criteria. | |
return {"render": rendered_image, | |
"alpha_integrated": alpha_integrated, | |
"color_integrated": color_integrated, | |
"point_coordinate": point_coordinate, | |
"point_sdf": point_sdf, | |
"visibility_filter" : radii > 0, | |
"radii": radii} |