import torch import torch.nn as nn import torch.nn.functional as F import cv2 import numpy as np import os import glob from skimage.morphology import binary_dilation, disk import argparse import trimesh from pathlib import Path import subprocess import sys import json if __name__ == "__main__": parser = argparse.ArgumentParser( description='Arguments to evaluate the mesh.' ) parser.add_argument('--input_mesh', type=str, help='path to the mesh to be evaluated') parser.add_argument('--scene', type=str, help='scan id of the input mesh') parser.add_argument('--output_dir', type=str, default='evaluation_results_single', help='path to the output folder') parser.add_argument('--TNT', type=str, default='Offical_DTU_Dataset', help='path to the GT DTU point clouds') args = parser.parse_args() TNT_Dataset = args.TNT out_dir = args.output_dir Path(out_dir).mkdir(parents=True, exist_ok=True) scene = args.scene ply_file = args.input_mesh result_mesh_file = os.path.join(out_dir, "culled_mesh.ply") # read scene.json f"python run.py --dataset-dir {ply_file} --traj-path {TNT_Dataset}/{scene}/{scene}_COLMAP_SfM.log --ply-path {TNT_Dataset}/{scene}/{scene}_COLMAP.ply"