import torch import torch.nn as nn import torch.nn.functional as F class UpsampleBlock(nn.Module): def __init__(self, num_input_channels, num_output_channels): super(UpsampleBlock, self).__init__() self.pixel_shuffle = nn.PixelShuffle(2) self.conv = nn.Conv2d(num_input_channels // (2 * 2), num_output_channels, 3, stride=1, padding=1) self.relu = nn.ReLU() def forward(self, x): x = self.pixel_shuffle(x) x = self.conv(x) x = self.relu(x) return x class AppearanceNetwork(nn.Module): def __init__(self, num_input_channels, num_output_channels): super(AppearanceNetwork, self).__init__() self.conv1 = nn.Conv2d(num_input_channels, 256, 3, stride=1, padding=1) self.up1 = UpsampleBlock(256, 128) self.up2 = UpsampleBlock(128, 64) self.up3 = UpsampleBlock(64, 32) self.up4 = UpsampleBlock(32, 16) self.conv2 = nn.Conv2d(16, 16, 3, stride=1, padding=1) self.conv3 = nn.Conv2d(16, num_output_channels, 3, stride=1, padding=1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.up1(x) x = self.up2(x) x = self.up3(x) x = self.up4(x) # bilinear interpolation x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = self.conv2(x) x = self.relu(x) x = self.conv3(x) x = self.sigmoid(x) return x if __name__ == "__main__": H, W = 1200//32, 1600//32 input_channels = 3 + 64 output_channels = 3 input = torch.randn(1, input_channels, H, W).cuda() model = AppearanceNetwork(input_channels, output_channels).cuda() output = model(input) print(output.shape)