# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch import torch.nn.functional as F from torch.autograd import Variable from math import exp def l1_loss(network_output, gt): return torch.abs((network_output - gt)).mean() def l2_loss(network_output, gt): return ((network_output - gt) ** 2).mean() def gaussian(window_size, sigma): gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)]) return gauss / gauss.sum() def create_window(window_size, channel): _1D_window = gaussian(window_size, 1.5).unsqueeze(1) _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) return window def ssim(img1, img2, window_size=11, size_average=True): channel = img1.size(-3) window = create_window(window_size, channel) if img1.is_cuda: window = window.cuda(img1.get_device()) window = window.type_as(img1) return _ssim(img1, img2, window, window_size, channel, size_average) def _ssim(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) mu1_mu2 = mu1 * mu2 sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2 C1 = 0.01 ** 2 C2 = 0.03 ** 2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) if size_average: return ssim_map.mean() else: return ssim_map.mean(1).mean(1).mean(1) def _ncc(img1, img2, window, window_size, channel, size_average=True): mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) mu1_sq = mu1.pow(2) mu2_sq = mu2.pow(2) sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq sigma1 = torch.sqrt(sigma1_sq + 1e-4) sigma2 = torch.sqrt(sigma2_sq + 1e-4) image1_norm = (img1 - mu1) / (sigma1 + 1e-8) image2_norm = (img2 - mu2) / (sigma2 + 1e-8) ncc = F.conv2d((image1_norm * image2_norm), window, padding=0, groups=channel) return torch.mean(ncc, dim=2) # def _ncc(pred, gt, window, channel): # ntotpx, nviews, nc, h, w = pred.shape # flat_pred = pred.view(-1, nc, h, w) # mu1 = F.conv2d(flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc) # mu2 = F.conv2d(gt, window, padding=0, groups=channel).view(ntotpx, nc) # mu1_sq = mu1.pow(2) # mu2_sq = mu2.pow(2).unsqueeze(1) # (ntotpx, 1, nc) # sigma1_sq = F.conv2d(flat_pred * flat_pred, window, padding=0, groups=channel).view(ntotpx, nviews, nc) - mu1_sq # sigma2_sq = F.conv2d(gt * gt, window, padding=0, groups=channel).view(ntotpx, 1, 3) - mu2_sq # sigma1 = torch.sqrt(sigma1_sq + 1e-4) # sigma2 = torch.sqrt(sigma2_sq + 1e-4) # pred_norm = (pred - mu1[:, :, :, None, None]) / (sigma1[:, :, :, None, None] + 1e-8) # [ntotpx, nviews, nc, h, w] # gt_norm = (gt[:, None, :, :, :] - mu2[:, None, :, None, None]) / ( # sigma2[:, :, :, None, None] + 1e-8) # ntotpx, nc, h, w # ncc = F.conv2d((pred_norm * gt_norm).view(-1, nc, h, w), window, padding=0, groups=channel).view( # ntotpx, nviews, nc) # return torch.mean(ncc, dim=2)