# copy from gaussian-opacity-fields # copy from 2DGS import math import torch import numpy as np def depths_to_points(view, depthmap): # c2w = (view.world_view_transform.T).inverse() # we train in camera coordinate c2w = torch.eye(4).float().cuda() W, H = view.image_width, view.image_height fx = W / (2 * math.tan(view.FoVx / 2.)) fy = H / (2 * math.tan(view.FoVy / 2.)) intrins = torch.tensor( [[fx, 0., W/2.], [0., fy, H/2.], [0., 0., 1.0]] ).float().cuda() grid_x, grid_y = torch.meshgrid(torch.arange(W)+0.5, torch.arange(H)+0.5, indexing='xy') points = torch.stack([grid_x, grid_y, torch.ones_like(grid_x)], dim=-1).reshape(-1, 3).float().cuda() rays_d = points @ intrins.inverse().T @ c2w[:3,:3].T rays_o = c2w[:3,3] points = depthmap.reshape(-1, 1) * rays_d + rays_o return points def depth_to_normal(view, depth): """ view: view camera depth: depthmap """ points = depths_to_points(view, depth).reshape(*depth.shape[1:], 3) output = torch.zeros_like(points) dx = torch.cat([points[2:, 1:-1] - points[:-2, 1:-1]], dim=0) dy = torch.cat([points[1:-1, 2:] - points[1:-1, :-2]], dim=1) normal_map = torch.nn.functional.normalize(torch.cross(dx, dy, dim=-1), dim=-1) output[1:-1, 1:-1, :] = normal_map return output, points