# # Copyright (C) 2024, ShanghaiTech # SVIP research group, https://github.com/svip-lab # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact huangbb@shanghaitech.edu.cn # import numpy as np import torch import trimesh from skimage import measure # modified from here https://github.com/autonomousvision/sdfstudio/blob/370902a10dbef08cb3fe4391bd3ed1e227b5c165/nerfstudio/utils/marching_cubes.py#L201 def marching_cubes_with_contraction( sdf, resolution=512, bounding_box_min=(-1.0, -1.0, -1.0), bounding_box_max=(1.0, 1.0, 1.0), return_mesh=False, level=0, simplify_mesh=True, inv_contraction=None, max_range=32.0, ): assert resolution % 512 == 0 resN = resolution cropN = 512 level = 0 N = resN // cropN grid_min = bounding_box_min grid_max = bounding_box_max xs = np.linspace(grid_min[0], grid_max[0], N + 1) ys = np.linspace(grid_min[1], grid_max[1], N + 1) zs = np.linspace(grid_min[2], grid_max[2], N + 1) meshes = [] for i in range(N): for j in range(N): for k in range(N): print(i, j, k) x_min, x_max = xs[i], xs[i + 1] y_min, y_max = ys[j], ys[j + 1] z_min, z_max = zs[k], zs[k + 1] x = np.linspace(x_min, x_max, cropN) y = np.linspace(y_min, y_max, cropN) z = np.linspace(z_min, z_max, cropN) xx, yy, zz = np.meshgrid(x, y, z, indexing="ij") points = torch.tensor(np.vstack([xx.ravel(), yy.ravel(), zz.ravel()]).T, dtype=torch.float).cuda() @torch.no_grad() def evaluate(points): z = [] for _, pnts in enumerate(torch.split(points, 256**3, dim=0)): z.append(sdf(pnts)) z = torch.cat(z, axis=0) return z # construct point pyramids points = points.reshape(cropN, cropN, cropN, 3) points = points.reshape(-1, 3) pts_sdf = evaluate(points.contiguous()) z = pts_sdf.detach().cpu().numpy() if not (np.min(z) > level or np.max(z) < level): z = z.astype(np.float32) verts, faces, normals, _ = measure.marching_cubes( volume=z.reshape(cropN, cropN, cropN), level=level, spacing=( (x_max - x_min) / (cropN - 1), (y_max - y_min) / (cropN - 1), (z_max - z_min) / (cropN - 1), ), ) verts = verts + np.array([x_min, y_min, z_min]) meshcrop = trimesh.Trimesh(verts, faces, normals) meshes.append(meshcrop) print("finished one block") combined = trimesh.util.concatenate(meshes) combined.merge_vertices(digits_vertex=6) # inverse contraction and clipping the points range if inv_contraction is not None: combined.vertices = inv_contraction(torch.from_numpy(combined.vertices).float().cuda()).cpu().numpy() combined.vertices = np.clip(combined.vertices, -max_range, max_range) return combined