import numpy as np import os import imageio import skimage.transform from utils.colmap_wrapper import run_colmap import utils.colmap_read_model as read_model def load_colmap_data(realdir): camerasfile = os.path.join(realdir, 'sparse/0/cameras.bin') camdata = read_model.read_cameras_binary(camerasfile) # cam = camdata[camdata.keys()[0]] list_of_keys = list(camdata.keys()) cam = camdata[list_of_keys[0]] print( 'Cameras', len(cam)) h, w, f = cam.height, cam.width, cam.params[0] # w, h, f = factor * w, factor * h, factor * f hwf = np.array([h,w,f]).reshape([3,1]) imagesfile = os.path.join(realdir, 'sparse/0/images.bin') imdata = read_model.read_images_binary(imagesfile) w2c_mats = [] bottom = np.array([0,0,0,1.]).reshape([1,4]) names = [imdata[k].name for k in imdata] print( 'Images #', len(names)) perm = np.argsort(names) for k in imdata: im = imdata[k] R = im.qvec2rotmat() t = im.tvec.reshape([3,1]) m = np.concatenate([np.concatenate([R, t], 1), bottom], 0) w2c_mats.append(m) w2c_mats = np.stack(w2c_mats, 0) c2w_mats = np.linalg.inv(w2c_mats) poses = c2w_mats[:, :3, :4].transpose([1,2,0]) poses = np.concatenate([poses, np.tile(hwf[..., np.newaxis], [1,1,poses.shape[-1]])], 1) points3dfile = os.path.join(realdir, 'sparse/0/points3D.bin') pts3d = read_model.read_points3d_binary(points3dfile) # must switch to [-u, r, -t] from [r, -u, t], NOT [r, u, -t] poses = np.concatenate([poses[:, 1:2, :], poses[:, 0:1, :], -poses[:, 2:3, :], poses[:, 3:4, :], poses[:, 4:5, :]], 1) return poses, pts3d, perm def save_poses(basedir, poses, pts3d, perm): pts_arr = [] vis_arr = [] for k in pts3d: pts_arr.append(pts3d[k].xyz) cams = [0] * poses.shape[-1] for ind in pts3d[k].image_ids: if len(cams) < ind - 1: print('ERROR: the correct camera poses for current points cannot be accessed') return cams[ind-1] = 1 vis_arr.append(cams) pts_arr = np.array(pts_arr) vis_arr = np.array(vis_arr) print( 'Points', pts_arr.shape, 'Visibility', vis_arr.shape ) zvals = np.sum(-(pts_arr[:, np.newaxis, :].transpose([2,0,1]) - poses[:3, 3:4, :]) * poses[:3, 2:3, :], 0) valid_z = zvals[vis_arr==1] print( 'Depth stats', valid_z.min(), valid_z.max(), valid_z.mean() ) save_arr = [] for i in perm: vis = vis_arr[:, i] zs = zvals[:, i] zs = zs[vis==1] close_depth, inf_depth = np.percentile(zs, .1), np.percentile(zs, 99.9) # print( i, close_depth, inf_depth ) save_arr.append(np.concatenate([poses[..., i].ravel(), np.array([close_depth, inf_depth])], 0)) save_arr = np.array(save_arr) np.save(os.path.join(basedir, 'poses_bounds.npy'), save_arr) def minify_v0(basedir, factors=[], resolutions=[]): needtoload = False for r in factors: imgdir = os.path.join(basedir, 'images_{}'.format(r)) if not os.path.exists(imgdir): needtoload = True for r in resolutions: imgdir = os.path.join(basedir, 'images_{}x{}'.format(r[1], r[0])) if not os.path.exists(imgdir): needtoload = True if not needtoload: return def downsample(imgs, f): sh = list(imgs.shape) sh = sh[:-3] + [sh[-3]//f, f, sh[-2]//f, f, sh[-1]] imgs = np.reshape(imgs, sh) imgs = np.mean(imgs, (-2, -4)) return imgs imgdir = os.path.join(basedir, 'images') imgs = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir))] imgs = [f for f in imgs if any([f.endswith(ex) for ex in ['JPG', 'jpg', 'png', 'jpeg', 'PNG']])] imgs = np.stack([imageio.imread(img)/255. for img in imgs], 0) for r in factors + resolutions: if isinstance(r, int): name = 'images_{}'.format(r) else: name = 'images_{}x{}'.format(r[1], r[0]) imgdir = os.path.join(basedir, name) if os.path.exists(imgdir): continue print('Minifying', r, basedir) if isinstance(r, int): imgs_down = downsample(imgs, r) else: imgs_down = skimage.transform.resize(imgs, [imgs.shape[0], r[0], r[1], imgs.shape[-1]], order=1, mode='constant', cval=0, clip=True, preserve_range=False, anti_aliasing=True, anti_aliasing_sigma=None) os.makedirs(imgdir) for i in range(imgs_down.shape[0]): imageio.imwrite(os.path.join(imgdir, 'image{:03d}.png'.format(i)), (255*imgs_down[i]).astype(np.uint8)) def minify(basedir, factors=[], resolutions=[]): needtoload = False for r in factors: imgdir = os.path.join(basedir, 'images_{}'.format(r)) if not os.path.exists(imgdir): needtoload = True for r in resolutions: imgdir = os.path.join(basedir, 'images_{}x{}'.format(r[1], r[0])) if not os.path.exists(imgdir): needtoload = True if not needtoload: return from shutil import copy from subprocess import check_output imgdir = os.path.join(basedir, 'images') imgs = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir))] imgs = [f for f in imgs if any([f.endswith(ex) for ex in ['JPG', 'jpg', 'png', 'jpeg', 'PNG']])] imgdir_orig = imgdir wd = os.getcwd() for r in factors + resolutions: if isinstance(r, int): name = 'images_{}'.format(r) resizearg = '{}%'.format(int(100./r)) else: name = 'images_{}x{}'.format(r[1], r[0]) resizearg = '{}x{}'.format(r[1], r[0]) imgdir = os.path.join(basedir, name) if os.path.exists(imgdir): continue print('Minifying', r, basedir) os.makedirs(imgdir) check_output('cp {}/* {}'.format(imgdir_orig, imgdir), shell=True) ext = imgs[0].split('.')[-1] args = ' '.join(['mogrify', '-resize', resizearg, '-format', 'png', '*.{}'.format(ext)]) print(args) os.chdir(imgdir) check_output(args, shell=True) os.chdir(wd) if ext != 'png': check_output('rm {}/*.{}'.format(imgdir, ext), shell=True) print('Removed duplicates') print('Done') def load_data(basedir, factor=None, width=None, height=None, load_imgs=True): poses_arr = np.load(os.path.join(basedir, 'poses_bounds.npy')) poses = poses_arr[:, :-2].reshape([-1, 3, 5]).transpose([1,2,0]) bds = poses_arr[:, -2:].transpose([1,0]) img0 = [os.path.join(basedir, 'images', f) for f in sorted(os.listdir(os.path.join(basedir, 'images'))) \ if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')][0] sh = imageio.imread(img0).shape sfx = '' if factor is not None: sfx = '_{}'.format(factor) minify(basedir, factors=[factor]) factor = factor elif height is not None: factor = sh[0] / float(height) width = int(sh[1] / factor) minify(basedir, resolutions=[[height, width]]) sfx = '_{}x{}'.format(width, height) elif width is not None: factor = sh[1] / float(width) height = int(sh[0] / factor) minify(basedir, resolutions=[[height, width]]) sfx = '_{}x{}'.format(width, height) else: factor = 1 imgdir = os.path.join(basedir, 'images' + sfx) if not os.path.exists(imgdir): print( imgdir, 'does not exist, returning' ) return imgfiles = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir)) if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')] if poses.shape[-1] != len(imgfiles): print( 'Mismatch between imgs {} and poses {} !!!!'.format(len(imgfiles), poses.shape[-1]) ) return sh = imageio.imread(imgfiles[0]).shape poses[:2, 4, :] = np.array(sh[:2]).reshape([2, 1]) poses[2, 4, :] = poses[2, 4, :] * 1./factor if not load_imgs: return poses, bds # imgs = [imageio.imread(f, ignoregamma=True)[...,:3]/255. for f in imgfiles] def imread(f): if f.endswith('png'): return imageio.imread(f, ignoregamma=True) else: return imageio.imread(f) imgs = imgs = [imread(f)[...,:3]/255. for f in imgfiles] imgs = np.stack(imgs, -1) print('Loaded image data', imgs.shape, poses[:,-1,0]) return poses, bds, imgs def gen_poses(basedir, match_type, factors=None): files_needed = ['{}.bin'.format(f) for f in ['cameras', 'images', 'points3D']] if os.path.exists(os.path.join(basedir, 'sparse/0')): files_had = os.listdir(os.path.join(basedir, 'sparse/0')) else: files_had = [] if not all([f in files_had for f in files_needed]): print( 'Need to run COLMAP' ) run_colmap(basedir, match_type) else: print('Don\'t need to run COLMAP') print( 'Post-colmap') poses, pts3d, perm = load_colmap_data(basedir) save_poses(basedir, poses, pts3d, perm) if factors is not None: print( 'Factors:', factors) minify(basedir, factors) print( 'Done with imgs2poses' ) return True