# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #copy from https://github.com/hbb1/2d-gaussian-splatting/blob/main/utils/render_utils.py import numpy as np import os import enum import types from typing import List, Mapping, Optional, Text, Tuple, Union import copy from PIL import Image import mediapy as media from matplotlib import cm from tqdm import tqdm import torch def normalize(x: np.ndarray) -> np.ndarray: """Normalization helper function.""" return x / np.linalg.norm(x) def pad_poses(p: np.ndarray) -> np.ndarray: """Pad [..., 3, 4] pose matrices with a homogeneous bottom row [0,0,0,1].""" bottom = np.broadcast_to([0, 0, 0, 1.], p[..., :1, :4].shape) return np.concatenate([p[..., :3, :4], bottom], axis=-2) def unpad_poses(p: np.ndarray) -> np.ndarray: """Remove the homogeneous bottom row from [..., 4, 4] pose matrices.""" return p[..., :3, :4] def recenter_poses(poses: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Recenter poses around the origin.""" cam2world = average_pose(poses) transform = np.linalg.inv(pad_poses(cam2world)) poses = transform @ pad_poses(poses) return unpad_poses(poses), transform def average_pose(poses: np.ndarray) -> np.ndarray: """New pose using average position, z-axis, and up vector of input poses.""" position = poses[:, :3, 3].mean(0) z_axis = poses[:, :3, 2].mean(0) up = poses[:, :3, 1].mean(0) cam2world = viewmatrix(z_axis, up, position) return cam2world def viewmatrix(lookdir: np.ndarray, up: np.ndarray, position: np.ndarray) -> np.ndarray: """Construct lookat view matrix.""" vec2 = normalize(lookdir) vec0 = normalize(np.cross(up, vec2)) vec1 = normalize(np.cross(vec2, vec0)) m = np.stack([vec0, vec1, vec2, position], axis=1) return m def focus_point_fn(poses: np.ndarray) -> np.ndarray: """Calculate nearest point to all focal axes in poses.""" directions, origins = poses[:, :3, 2:3], poses[:, :3, 3:4] m = np.eye(3) - directions * np.transpose(directions, [0, 2, 1]) mt_m = np.transpose(m, [0, 2, 1]) @ m focus_pt = np.linalg.inv(mt_m.mean(0)) @ (mt_m @ origins).mean(0)[:, 0] return focus_pt def transform_poses_pca(poses: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Transforms poses so principal components lie on XYZ axes. Args: poses: a (N, 3, 4) array containing the cameras' camera to world transforms. Returns: A tuple (poses, transform), with the transformed poses and the applied camera_to_world transforms. """ t = poses[:, :3, 3] t_mean = t.mean(axis=0) t = t - t_mean eigval, eigvec = np.linalg.eig(t.T @ t) # Sort eigenvectors in order of largest to smallest eigenvalue. inds = np.argsort(eigval)[::-1] eigvec = eigvec[:, inds] rot = eigvec.T if np.linalg.det(rot) < 0: rot = np.diag(np.array([1, 1, -1])) @ rot transform = np.concatenate([rot, rot @ -t_mean[:, None]], -1) poses_recentered = unpad_poses(transform @ pad_poses(poses)) transform = np.concatenate([transform, np.eye(4)[3:]], axis=0) # Flip coordinate system if z component of y-axis is negative if poses_recentered.mean(axis=0)[2, 1] < 0: poses_recentered = np.diag(np.array([1, -1, -1])) @ poses_recentered transform = np.diag(np.array([1, -1, -1, 1])) @ transform return poses_recentered, transform # points = np.random.rand(3,100) # points_h = np.concatenate((points,np.ones_like(points[:1])), axis=0) # (poses_recentered @ points_h)[0] # (transform @ pad_poses(poses) @ points_h)[0,:3] # import pdb; pdb.set_trace() # # Just make sure it's it in the [-1, 1]^3 cube # scale_factor = 1. / np.max(np.abs(poses_recentered[:, :3, 3])) # poses_recentered[:, :3, 3] *= scale_factor # transform = np.diag(np.array([scale_factor] * 3 + [1])) @ transform # return poses_recentered, transform def generate_ellipse_path(poses: np.ndarray, n_frames: int = 120, const_speed: bool = True, z_variation: float = 0., z_phase: float = 0.) -> np.ndarray: """Generate an elliptical render path based on the given poses.""" # Calculate the focal point for the path (cameras point toward this). center = focus_point_fn(poses) # Path height sits at z=0 (in middle of zero-mean capture pattern). offset = np.array([center[0], center[1], 0]) # Calculate scaling for ellipse axes based on input camera positions. sc = np.percentile(np.abs(poses[:, :3, 3] - offset), 90, axis=0) # Use ellipse that is symmetric about the focal point in xy. low = -sc + offset high = sc + offset # Optional height variation need not be symmetric z_low = np.percentile((poses[:, :3, 3]), 10, axis=0) z_high = np.percentile((poses[:, :3, 3]), 90, axis=0) def get_positions(theta): # Interpolate between bounds with trig functions to get ellipse in x-y. # Optionally also interpolate in z to change camera height along path. return np.stack([ low[0] + (high - low)[0] * (np.cos(theta) * .5 + .5), low[1] + (high - low)[1] * (np.sin(theta) * .5 + .5), z_variation * (z_low[2] + (z_high - z_low)[2] * (np.cos(theta + 2 * np.pi * z_phase) * .5 + .5)), ], -1) theta = np.linspace(0, 2. * np.pi, n_frames + 1, endpoint=True) positions = get_positions(theta) #if const_speed: # # Resample theta angles so that the velocity is closer to constant. # lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1) # theta = stepfun.sample(None, theta, np.log(lengths), n_frames + 1) # positions = get_positions(theta) # Throw away duplicated last position. positions = positions[:-1] # Set path's up vector to axis closest to average of input pose up vectors. avg_up = poses[:, :3, 1].mean(0) avg_up = avg_up / np.linalg.norm(avg_up) ind_up = np.argmax(np.abs(avg_up)) up = np.eye(3)[ind_up] * np.sign(avg_up[ind_up]) return np.stack([viewmatrix(p - center, up, p) for p in positions]) def generate_path(viewpoint_cameras, n_frames=480): c2ws = np.array([np.linalg.inv(np.asarray((cam.world_view_transform.T).cpu().numpy())) for cam in viewpoint_cameras]) pose = c2ws[:,:3,:] @ np.diag([1, -1, -1, 1]) pose_recenter, colmap_to_world_transform = transform_poses_pca(pose) # generate new poses new_poses = generate_ellipse_path(poses=pose_recenter, n_frames=n_frames) # warp back to orignal scale new_poses = np.linalg.inv(colmap_to_world_transform) @ pad_poses(new_poses) traj = [] for c2w in new_poses: c2w = c2w @ np.diag([1, -1, -1, 1]) cam = copy.deepcopy(viewpoint_cameras[0]) cam.image_height = int(cam.image_height / 2) * 2 cam.image_width = int(cam.image_width / 2) * 2 cam.world_view_transform = torch.from_numpy(np.linalg.inv(c2w).T).float().cuda() cam.full_proj_transform = (cam.world_view_transform.unsqueeze(0).bmm(cam.projection_matrix.unsqueeze(0))).squeeze(0) cam.camera_center = cam.world_view_transform.inverse()[3, :3] traj.append(cam) return traj def load_img(pth: str) -> np.ndarray: """Load an image and cast to float32.""" with open(pth, 'rb') as f: image = np.array(Image.open(f), dtype=np.float32) return image def create_videos(base_dir, input_dir, out_name, num_frames=480): """Creates videos out of the images saved to disk.""" # Last two parts of checkpoint path are experiment name and scene name. video_prefix = f'{out_name}' zpad = max(5, len(str(num_frames - 1))) idx_to_str = lambda idx: str(idx).zfill(zpad) os.makedirs(base_dir, exist_ok=True) render_dist_curve_fn = np.log # Load one example frame to get image shape and depth range. depth_file = os.path.join(input_dir, 'vis', f'depth_{idx_to_str(0)}.tiff') depth_frame = load_img(depth_file) shape = depth_frame.shape p = 3 distance_limits = np.percentile(depth_frame.flatten(), [p, 100 - p]) lo, hi = [render_dist_curve_fn(x) for x in distance_limits] print(f'Video shape is {shape[:2]}') video_kwargs = { 'shape': shape[:2], 'codec': 'h264', 'fps': 60, 'crf': 18, } for k in ['depth', 'normal', 'color']: video_file = os.path.join(base_dir, f'{video_prefix}_{k}.mp4') input_format = 'gray' if k == 'alpha' else 'rgb' file_ext = 'png' if k in ['color', 'normal'] else 'tiff' idx = 0 if k == 'color': file0 = os.path.join(input_dir, 'renders', f'{idx_to_str(0)}.{file_ext}') else: file0 = os.path.join(input_dir, 'vis', f'{k}_{idx_to_str(0)}.{file_ext}') if not os.path.exists(file0): print(f'Images missing for tag {k}') continue print(f'Making video {video_file}...') with media.VideoWriter( video_file, **video_kwargs, input_format=input_format) as writer: for idx in tqdm(range(num_frames)): # img_file = os.path.join(input_dir, f'{k}_{idx_to_str(idx)}.{file_ext}') if k == 'color': img_file = os.path.join(input_dir, 'renders', f'{idx_to_str(idx)}.{file_ext}') else: img_file = os.path.join(input_dir, 'vis', f'{k}_{idx_to_str(idx)}.{file_ext}') if not os.path.exists(img_file): ValueError(f'Image file {img_file} does not exist.') img = load_img(img_file) if k in ['color', 'normal']: img = img / 255. elif k.startswith('depth'): img = render_dist_curve_fn(img) img = np.clip((img - np.minimum(lo, hi)) / np.abs(hi - lo), 0, 1) img = cm.get_cmap('turbo')(img)[..., :3] frame = (np.clip(np.nan_to_num(img), 0., 1.) * 255.).astype(np.uint8) writer.add_image(frame) idx += 1 def save_img_u8(img, pth): """Save an image (probably RGB) in [0, 1] to disk as a uint8 PNG.""" with open(pth, 'wb') as f: Image.fromarray( (np.clip(np.nan_to_num(img), 0., 1.) * 255.).astype(np.uint8)).save( f, 'PNG') def save_img_f32(depthmap, pth): """Save an image (probably a depthmap) to disk as a float32 TIFF.""" with open(pth, 'wb') as f: Image.fromarray(np.nan_to_num(depthmap).astype(np.float32)).save(f, 'TIFF')