from typing import * from torch import Tensor from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution from lpips import LPIPS from src.models.gsrecon import GSRecon from skimage.metrics import structural_similarity as calculate_ssim import numpy as np import torch from torch import nn import torch.nn.functional as tF from einops import rearrange from diffusers import AutoencoderKL, AutoencoderTiny from diffusers.models.autoencoders.autoencoder_kl import Decoder from diffusers.models.autoencoders.autoencoder_tiny import DecoderTiny from src.options import Options TAE_DICT = { "stable-diffusion-v1-5/stable-diffusion-v1-5": "madebyollin/taesd", "stabilityai/stable-diffusion-2-1": "madebyollin/taesd", "PixArt-alpha/PixArt-XL-2-512x512": "madebyollin/taesd", "stabilityai/stable-diffusion-xl-base-1.0": "madebyollin/taesdxl", "madebyollin/sdxl-vae-fp16-fix": "madebyollin/taesdxl", "PixArt-alpha/PixArt-Sigma-XL-2-512-MS": "madebyollin/taesdxl", "stabilityai/stable-diffusion-3-medium-diffusers": "madebyollin/taesd3", "stabilityai/stable-diffusion-3.5-medium": "madebyollin/taesd3", "stabilityai/stable-diffusion-3.5-large": "madebyollin/taesd3", "black-forest-labs/FLUX.1-dev": "madebyollin/taef1", } class GSAutoencoderKL(nn.Module): def __init__(self, opt: Options): super().__init__() self.opt = opt AutoencoderKL_from = AutoencoderKL.from_config if opt.vae_from_scratch else AutoencoderKL.from_pretrained AutoencoderTiny_from = AutoencoderTiny.from_config if opt.vae_from_scratch else AutoencoderTiny.from_pretrained if not opt.use_tinyae: if "fp16" not in opt.pretrained_model_name_or_path: if "Sigma" in opt.pretrained_model_name_or_path: # PixArt-Sigma self.vae = AutoencoderKL_from("PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae") else: self.vae = AutoencoderKL_from(opt.pretrained_model_name_or_path, subfolder="vae") else: # fixed fp16 VAE for SDXL self.vae = AutoencoderKL_from(opt.pretrained_model_name_or_path) self.vae.enable_slicing() # to save memory else: self.vae = AutoencoderTiny_from(TAE_DICT[opt.pretrained_model_name_or_path]) # Encode input Conv new_conv_in = nn.Conv2d( 12, # number of GS properties self.vae.config.block_out_channels[0], kernel_size=3, stride=1, padding=1, ) if not opt.use_tinyae: init_conv_in_weight = torch.cat([self.vae.encoder.conv_in.weight.data]*4, dim=1) else: init_conv_in_weight = torch.cat([self.vae.encoder.layers[0].weight.data]*4, dim=1) # init_conv_in_weight /= 4 # rescale input conv weight parameters new_conv_in.weight.data.copy_(init_conv_in_weight) if not opt.use_tinyae: new_conv_in.bias.data.copy_(self.vae.encoder.conv_in.bias.data) self.vae.encoder.conv_in = new_conv_in else: new_conv_in.bias.data.copy_(self.vae.encoder.layers[0].bias.data) self.vae.encoder.layers[0] = new_conv_in # Decoder output Conv new_conv_out = nn.Conv2d( self.vae.config.block_out_channels[0], 12, # number of GS properties kernel_size=3, stride=1, padding=1, ) if not opt.use_tinyae: init_conv_out_weight = torch.cat([self.vae.decoder.conv_out.weight.data]*4, dim=0) else: init_conv_out_weight = torch.cat([self.vae.decoder.layers[-1].weight.data]*4, dim=0) new_conv_out.weight.data.copy_(init_conv_out_weight) if not opt.use_tinyae: init_conv_out_bias = torch.cat([self.vae.decoder.conv_out.bias.data]*4, dim=0) else: init_conv_out_bias = torch.cat([self.vae.decoder.layers[-1].bias.data]*4, dim=0) new_conv_out.bias.data.copy_(init_conv_out_bias) if not opt.use_tinyae: self.vae.decoder.conv_out = new_conv_out else: self.vae.decoder.layers[-1] = new_conv_out if opt.freeze_encoder: self.vae.encoder.requires_grad_(False) self.vae.quant_conv.requires_grad_(False) self.scaling_factor = opt.scaling_factor if opt.scaling_factor is not None else self.vae.config.scaling_factor self.scaling_factor = self.scaling_factor if self.scaling_factor is not None else 1. self.shift_factor = opt.shift_factor if opt.shift_factor is not None else self.vae.config.shift_factor self.shift_factor = self.shift_factor if self.shift_factor is not None else 0. # TinyAE tae = AutoencoderTiny_from(TAE_DICT[opt.pretrained_model_name_or_path]) # Tiny decoder output Conv new_conv_out = nn.Conv2d( tae.config.block_out_channels[0], # the same as `self.vae.config.block_out_channels[0]` 12, # number of GS properties kernel_size=3, stride=1, padding=1, ) init_conv_out_weight = torch.cat([tae.decoder.layers[-1].weight.data]*4, dim=0) new_conv_out.weight.data.copy_(init_conv_out_weight) init_conv_out_bias = torch.cat([tae.decoder.layers[-1].bias.data]*4, dim=0) new_conv_out.bias.data.copy_(init_conv_out_bias) tae.decoder.layers[-1] = new_conv_out self.tiny_decoder = tae.decoder if opt.use_tiny_decoder: assert not opt.use_tinyae # so 2 decoders in this model def forward(self, *args, func_name="compute_loss", **kwargs): # To support different forward functions for models wrapped by `accelerate` return getattr(self, func_name)(*args, **kwargs) def compute_loss(self, data: Optional[Dict[str, Tensor]], lpips_loss: LPIPS, gsrecon: GSRecon, step: int, latents: Optional[Tensor] = None, kl: Optional[float] = None, gs: Optional[Tensor] = None, use_tiny_decoder: bool = False, dtype: torch.dtype = torch.float32, ): outputs = {} color_name = "albedo" if self.opt.input_albedo else "image" images = data[color_name].to(dtype) # (B, V, 3, H, W) masks = data["mask"].to(dtype) # (B, V, 1, H, W) C2W = data["C2W"].to(dtype) # (B, V, 4, 4) fxfycxcy = data["fxfycxcy"].to(dtype) # (B, V, 4) # Input views V_in = self.opt.num_input_views input_images = images[:, :V_in, ...] input_C2W = C2W[:, :V_in, ...] input_fxfycxcy = fxfycxcy[:, :V_in, ...] if self.opt.input_normal: input_images = torch.cat([input_images, data["normal"][:, :V_in, ...]], dim=2) if self.opt.input_coord: input_images = torch.cat([input_images, data["coord"][:, :V_in, ...]], dim=2) if self.opt.input_mr: input_images = torch.cat([input_images, data["mr"][:, :V_in, :2]], dim=2) # Get GS latents, KL divergence and ground-truth GS if latents is None or kl is None or gs is None: context = torch.no_grad() if use_tiny_decoder else torch.enable_grad() # Reconstruct & Encode with context: latents, kl, gs = self.get_gslatents(gsrecon, input_images, input_C2W, input_fxfycxcy, return_kl=True, return_gs=True) outputs["kl"] = kl / (sum(latents.shape[1:])) # Decode recon_gs = self.decode(latents, use_tiny_decoder) recon_gs = rearrange(recon_gs, "(b v) c h w -> b v c h w", v=V_in) gs = rearrange(gs, "(b v) c h w -> b v c h w", v=V_in) recon_model_outputs = { "rgb": recon_gs[:, :, :3, ...], "scale": recon_gs[:, :, 3:6, ...], "rotation": recon_gs[:, :, 6:10, ...], "opacity": recon_gs[:, :, 10:11, ...], "depth": recon_gs[:, :, 11:12, ...], } render_outputs = gsrecon.gs_renderer.render(recon_model_outputs, input_C2W, input_fxfycxcy, C2W, fxfycxcy) for k in render_outputs.keys(): render_outputs[k] = render_outputs[k].to(dtype) render_images = render_outputs["image"] # (B, V, 3, H, W) render_masks = render_outputs["alpha"] # (B, V, 1, H, W) render_coords = render_outputs["coord"] # (B, V, 3, H, W) render_normals = render_outputs["normal"] # (B, V, 3, H, W) # For visualization outputs["images_render"] = render_images outputs["images_gt"] = images if self.opt.vis_coords: outputs["images_coord"] = render_coords if self.opt.load_coord: outputs["images_gt_coord"] = data["coord"] if self.opt.vis_normals: outputs["images_normal"] = render_normals if self.opt.load_normal: outputs["images_gt_normal"] = data["normal"] # if self.opt.input_mr: # outputs["images_mr"] = data["mr"] ################################ Compute reconstruction losses/metrics ################################ outputs["latent_mse"] = latent_mse = tF.mse_loss(gs, recon_gs) outputs["image_mse"] = image_mse = tF.mse_loss(images, render_images) outputs["mask_mse"] = mask_mse = tF.mse_loss(masks, render_masks) loss = image_mse + mask_mse # Depth & Normal if self.opt.coord_weight > 0: assert self.opt.load_coord outputs["coord_mse"] = coord_mse = tF.mse_loss(data["coord"], render_coords) loss += self.opt.coord_weight * coord_mse if self.opt.normal_weight > 0: assert self.opt.load_normal outputs["normal_cosim"] = normal_cosim = tF.cosine_similarity(data["normal"], render_normals, dim=2).mean() loss += self.opt.normal_weight * (1. - normal_cosim) # LPIPS if step < self.opt.lpips_warmup_start: lpips_weight = 0. elif step > self.opt.lpips_warmup_end: lpips_weight = self.opt.lpips_weight else: lpips_weight = self.opt.lpips_weight * (step - self.opt.lpips_warmup_start) / ( self.opt.lpips_warmup_end - self.opt.lpips_warmup_start) if lpips_weight > 0.: outputs["lpips"] = lpips = lpips_loss( # Downsampled to at most 256 to reduce memory cost tF.interpolate( rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False ) if self.opt.lpips_resize > 0 else rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., tF.interpolate( rearrange(render_images, "b v c h w -> (b v) c h w") * 2. - 1., (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False ) if self.opt.lpips_resize > 0 else rearrange(render_images, "b v c h w -> (b v) c h w") * 2. - 1., ).mean() loss += lpips_weight * lpips outputs["loss"] = self.opt.recon_weight * latent_mse + self.opt.render_weight * loss # Metric: PSNR, SSIM and LPIPS with torch.no_grad(): outputs["psnr"] = -10 * torch.log10(torch.mean((images - render_images.detach()) ** 2)) outputs["ssim"] = torch.tensor(calculate_ssim( (rearrange(images, "b v c h w -> (b v c) h w") .cpu().float().numpy() * 255.).astype(np.uint8), (rearrange(render_images.detach(), "b v c h w -> (b v c) h w") .cpu().float().numpy() * 255.).astype(np.uint8), channel_axis=0, ), device=images.device) if lpips_weight <= 0.: outputs["lpips"] = lpips = lpips_loss( # Downsampled to at most 256 to reduce memory cost tF.interpolate( rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False ) if self.opt.lpips_resize > 0 else rearrange(images, "b v c h w -> (b v) c h w") * 2. - 1., tF.interpolate( rearrange(render_images.detach(), "b v c h w -> (b v) c h w") * 2. - 1., (self.opt.lpips_resize, self.opt.lpips_resize), mode="bilinear", align_corners=False ) if self.opt.lpips_resize > 0 else rearrange(render_images.detach(), "b v c h w -> (b v) c h w") * 2. - 1., ).mean() return outputs def get_gslatents(self, gsrecon: GSRecon, input_images: Tensor, input_C2W: Tensor, input_fxfycxcy: Tensor, return_kl: bool = False, return_gs: bool = False, ) -> Union[Tuple[Tensor, Tensor], Tensor]: (B, V_in), chunk = input_images.shape[:2], self.opt.chunk_size # Reconstruction gs = [] for i in range(0, B, chunk): gsrecon_outputs = gsrecon.forward_gaussians( input_images[i:min(B, i+chunk)], input_C2W[i:min(B, i+chunk)], input_fxfycxcy[i:min(B, i+chunk)], ) _gs = torch.cat([ gsrecon_outputs["rgb"], gsrecon_outputs["scale"], gsrecon_outputs["rotation"], gsrecon_outputs["opacity"], gsrecon_outputs["depth"], ], dim=2) # (`chunk`, V_in, C=12, H, W) gs.append(_gs) gs = torch.cat(gs, dim=0) # (B, V_in, C=12, H, W) gs = rearrange(gs, "b v c h w -> (b v) c h w") # GSVAE encoding latents, kl = [], 0. for i in range(0, B*V_in, chunk): _latents, _kl = self.encode(gs[i:min(B*V_in, i+chunk)], deterministic=(not self.training)) # (`chunk`, D=4, H', W') latents.append(_latents) kl += (_latents.shape[0] * _kl) latents = torch.cat(latents, dim=0) # (B*V_in, D=4, H', W') kl /= latents.shape[0] results = [latents] if return_kl: results.append(kl) if return_gs: results.append(gs) if len(results) == 1: # only return latents return results[0] else: return tuple(results) def decode_gslatents(self, latents: Tensor, use_tiny_decoder: bool = False) -> Dict[str, Tensor]: V_in = self.opt.num_input_views B, chunk = latents.shape[0] // self.opt.num_input_views, self.opt.chunk_size # GSVAE decoding recon_gs = [] for i in range(0, B*V_in, chunk): _recon_gs = self.decode(latents[i:min(B*V_in, i+chunk)], use_tiny_decoder) # (`chunk`, C=12, H, W) recon_gs.append(_recon_gs) recon_gs = torch.cat(recon_gs, dim=0) # (B*V_in, C=12, H, W) recon_gs = rearrange(recon_gs, "(b v) c h w -> b v c h w", v=V_in) recon_gsrecon_outputs = { "rgb": recon_gs[:, :, :3, ...], "scale": recon_gs[:, :, 3:6, ...], "rotation": recon_gs[:, :, 6:10, ...], "opacity": recon_gs[:, :, 10:11, ...], "depth": recon_gs[:, :, 11:12, ...], } return recon_gsrecon_outputs def decode_and_render_gslatents(self, gsrecon: GSRecon, latents: Tensor, input_C2W: Tensor, input_fxfycxcy: Tensor, C2W: Optional[Tensor] = None, fxfycxcy: Optional[Tensor] = None, height: Optional[float] = None, width: Optional[float] = None, scaling_modifier: int = 1, opacity_threshold: float = 0., use_tiny_decoder: bool = False, ) -> Dict[str, Tensor]: C2W = C2W if C2W is not None else input_C2W fxfycxcy = fxfycxcy if fxfycxcy is not None else input_fxfycxcy recon_gsrecon_outputs = self.decode_gslatents(latents, use_tiny_decoder) render_outputs = gsrecon.gs_renderer.render( recon_gsrecon_outputs, input_C2W, input_fxfycxcy, C2W, fxfycxcy, height=height, width=width, scaling_modifier=scaling_modifier, opacity_threshold=opacity_threshold, ) return render_outputs # (B, V, 3 or 1, H, W) def encode(self, gs: Tensor, deterministic=False) -> Tuple[Tensor, Tensor]: if self.opt.freeze_encoder or self.opt.use_tinyae: self.vae.encoder.eval() self.vae.quant_conv.eval() assert gs.ndim == 4 # (B*V, C=12, H, W) if not self.opt.use_tinyae: latent_dist: DiagonalGaussianDistribution = self.vae.encode(gs).latent_dist latents = latent_dist.sample() if not deterministic else latent_dist.mode() # (B*V, D=4, H, W) kl = latent_dist.kl().mean() else: latents = self.vae.encode(gs).latents # (B*V, D=4, H, W) kl = torch.zeros(1, dtype=latents.dtype, device=latents.device) # dummy return latents, kl def decode(self, z: Tensor, use_tiny_decoder: bool = False) -> Tensor: if not hasattr(self, "tiny_decoder"): use_tiny_decoder = False if use_tiny_decoder: original_decoder = self.vae.decoder self.vae.decoder = self.tiny_decoder assert isinstance(self.vae.decoder, DecoderTiny) # NOTE: NOT exclude the origin `self.vae.post_quant_conv` for tiny decoder here # But we conduct full fine-tuning for VAE and tiny decoder, so it should be fine z = self.scaling_factor * (z - self.shift_factor) # `AutoencoderTiny` uses scaled (and shifted) latents recon_gs = self.vae.decode(z).sample.clamp(-1., 1.) # (B*V, C=12, H, W) # Change back to the original decoder if use_tiny_decoder: self.vae.decoder = original_decoder assert isinstance(self.vae.decoder, Decoder) return recon_gs