Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,042 Bytes
bef5729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
from src.utils.typing_utils import *
import os
import numpy as np
from PIL import Image
import trimesh
from trimesh.transformations import rotation_matrix
import pyrender
from diffusers.utils import export_to_video
from diffusers.utils.loading_utils import load_video
import torch
from torchvision.utils import make_grid
os.environ['PYOPENGL_PLATFORM'] = 'egl'
def render(
scene: pyrender.Scene,
renderer: pyrender.Renderer,
camera: pyrender.Camera,
pose: np.ndarray,
light: Optional[pyrender.Light] = None,
normalize_depth: bool = False,
flags: int = pyrender.constants.RenderFlags.NONE,
return_type: Literal['pil', 'ndarray'] = 'pil'
) -> Union[Tuple[np.ndarray, np.ndarray], Tuple[Image.Image, Image.Image]]:
camera_node = scene.add(camera, pose=pose)
if light is not None:
light_node = scene.add(light, pose=pose)
image, depth = renderer.render(
scene,
flags=flags
)
scene.remove_node(camera_node)
if light is not None:
scene.remove_node(light_node)
if normalize_depth or return_type == 'pil':
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
if return_type == 'pil':
image = Image.fromarray(image)
depth = Image.fromarray(depth.astype(np.uint8))
return image, depth
def rotation_matrix_from_vectors(vec1, vec2):
a, b = vec1 / np.linalg.norm(vec1), vec2 / np.linalg.norm(vec2)
v = np.cross(a, b)
c = np.dot(a, b)
s = np.linalg.norm(v)
if s == 0:
return np.eye(3) if c > 0 else -np.eye(3)
kmat = np.array([
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]
])
return np.eye(3) + kmat + kmat @ kmat * ((1 - c) / (s ** 2))
def create_circular_camera_positions(
num_views: int,
radius: float,
axis: np.ndarray = np.array([0.0, 1.0, 0.0])
) -> List[np.ndarray]:
# Create a list of positions for a circular camera trajectory
# around the given axis with the given radius.
positions = []
axis = axis / np.linalg.norm(axis)
for i in range(num_views):
theta = 2 * np.pi * i / num_views
position = np.array([
np.sin(theta) * radius,
0.0,
np.cos(theta) * radius
])
if not np.allclose(axis, np.array([0.0, 1.0, 0.0])):
R = rotation_matrix_from_vectors(np.array([0.0, 1.0, 0.0]), axis)
position = R @ position
positions.append(position)
return positions
def create_circular_camera_poses(
num_views: int,
radius: float,
axis: np.ndarray = np.array([0.0, 1.0, 0.0])
) -> List[np.ndarray]:
# Create a list of poses for a circular camera trajectory
# around the given axis with the given radius.
# The camera always looks at the origin.
# The up vector is always [0, 1, 0].
canonical_pose = np.array([
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, radius],
[0.0, 0.0, 0.0, 1.0]
])
poses = []
for i in range(num_views):
theta = 2 * np.pi * i / num_views
R = rotation_matrix(
angle=theta,
direction=axis,
point=[0, 0, 0]
)
pose = R @ canonical_pose
poses.append(pose)
return poses
def render_views_around_mesh(
mesh: Union[trimesh.Trimesh, trimesh.Scene],
num_views: int = 36,
radius: float = 3.5,
axis: np.ndarray = np.array([0.0, 1.0, 0.0]),
image_size: tuple = (512, 512),
fov: float = 40.0,
light_intensity: Optional[float] = 5.0,
znear: float = 0.1,
zfar: float = 10.0,
normalize_depth: bool = False,
flags: int = pyrender.constants.RenderFlags.NONE,
return_depth: bool = False,
return_type: Literal['pil', 'ndarray'] = 'pil'
) -> Union[
List[Image.Image],
List[np.ndarray],
Tuple[List[Image.Image], List[Image.Image]],
Tuple[List[np.ndarray], List[np.ndarray]]
]:
if not isinstance(mesh, (trimesh.Trimesh, trimesh.Scene)):
raise ValueError("mesh must be a trimesh.Trimesh or trimesh.Scene object")
if isinstance(mesh, trimesh.Trimesh):
mesh = trimesh.Scene(mesh)
scene = pyrender.Scene.from_trimesh_scene(mesh)
light = pyrender.DirectionalLight(
color=np.ones(3),
intensity=light_intensity
) if light_intensity is not None else None
camera = pyrender.PerspectiveCamera(
yfov=np.deg2rad(fov),
aspectRatio=image_size[0]/image_size[1],
znear=znear,
zfar=zfar
)
renderer = pyrender.OffscreenRenderer(*image_size)
camera_poses = create_circular_camera_poses(
num_views,
radius,
axis = axis
)
images, depths = [], []
for pose in camera_poses:
image, depth = render(
scene, renderer, camera, pose, light,
normalize_depth=normalize_depth,
flags=flags,
return_type=return_type
)
images.append(image)
depths.append(depth)
renderer.delete()
if return_depth:
return images, depths
return images
def render_normal_views_around_mesh(
mesh: Union[trimesh.Trimesh, trimesh.Scene],
num_views: int = 36,
radius: float = 3.5,
axis: np.ndarray = np.array([0.0, 1.0, 0.0]),
image_size: tuple = (512, 512),
fov: float = 40.0,
light_intensity: Optional[float] = 5.0,
znear: float = 0.1,
zfar: float = 10.0,
normalize_depth: bool = False,
flags: int = pyrender.constants.RenderFlags.NONE,
return_depth: bool = False,
return_type: Literal['pil', 'ndarray'] = 'pil'
) -> Union[
List[Image.Image],
List[np.ndarray],
Tuple[List[Image.Image], List[Image.Image]],
Tuple[List[np.ndarray], List[np.ndarray]]
]:
if not isinstance(mesh, (trimesh.Trimesh, trimesh.Scene)):
raise ValueError("mesh must be a trimesh.Trimesh or trimesh.Scene object")
if isinstance(mesh, trimesh.Scene):
mesh = mesh.to_geometry()
normals = mesh.vertex_normals
colors = ((normals + 1.0) / 2.0 * 255).astype(np.uint8)
mesh.visual = trimesh.visual.ColorVisuals(
mesh=mesh,
vertex_colors=colors
)
mesh = trimesh.Scene(mesh)
return render_views_around_mesh(
mesh, num_views, radius, axis,
image_size, fov, light_intensity, znear, zfar,
normalize_depth, flags,
return_depth, return_type
)
def create_camera_pose_on_sphere(
azimuth: float = 0.0, # in degrees
elevation: float = 0.0, # in degrees
radius: float = 3.5,
) -> np.ndarray:
# Create a camera pose for a given azimuth and elevation
# with the given radius.
# The camera always looks at the origin.
# The up vector is always [0, 1, 0].
canonical_pose = np.array([
[1.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, radius],
[0.0, 0.0, 0.0, 1.0]
])
azimuth = np.deg2rad(azimuth)
elevation = np.deg2rad(elevation)
position = np.array([
np.cos(elevation) * np.sin(azimuth),
np.sin(elevation),
np.cos(elevation) * np.cos(azimuth),
])
R = np.eye(4)
R[:3, :3] = rotation_matrix_from_vectors(
np.array([0.0, 0.0, 1.0]),
position
)
pose = R @ canonical_pose
return pose
def render_single_view(
mesh: Union[trimesh.Trimesh, trimesh.Scene],
azimuth: float = 0.0, # in degrees
elevation: float = 0.0, # in degrees
radius: float = 3.5,
image_size: tuple = (512, 512),
fov: float = 40.0,
light_intensity: Optional[float] = 5.0,
num_env_lights: int = 0,
znear: float = 0.1,
zfar: float = 10.0,
normalize_depth: bool = False,
flags: int = pyrender.constants.RenderFlags.NONE,
return_depth: bool = False,
return_type: Literal['pil', 'ndarray'] = 'pil'
) -> Union[
Image.Image,
np.ndarray,
Tuple[Image.Image, Image.Image],
Tuple[np.ndarray, np.ndarray]
]:
if not isinstance(mesh, (trimesh.Trimesh, trimesh.Scene)):
raise ValueError("mesh must be a trimesh.Trimesh or trimesh.Scene object")
if isinstance(mesh, trimesh.Trimesh):
mesh = trimesh.Scene(mesh)
scene = pyrender.Scene.from_trimesh_scene(mesh)
light = pyrender.DirectionalLight(
color=np.ones(3),
intensity=light_intensity
) if light_intensity is not None else None
camera = pyrender.PerspectiveCamera(
yfov=np.deg2rad(fov),
aspectRatio=image_size[0]/image_size[1],
znear=znear,
zfar=zfar
)
renderer = pyrender.OffscreenRenderer(*image_size)
camera_pose = create_camera_pose_on_sphere(
azimuth,
elevation,
radius
)
if num_env_lights > 0:
env_light_poses = create_circular_camera_poses(
num_env_lights,
radius,
axis = np.array([0.0, 1.0, 0.0])
)
for pose in env_light_poses:
scene.add(pyrender.DirectionalLight(
color=np.ones(3),
intensity=light_intensity
), pose=pose)
# set light to None
light = None
image, depth = render(
scene, renderer, camera, camera_pose, light,
normalize_depth=normalize_depth,
flags=flags,
return_type=return_type
)
renderer.delete()
if return_depth:
return image, depth
return image
def render_normal_single_view(
mesh: Union[trimesh.Trimesh, trimesh.Scene],
azimuth: float = 0.0, # in degrees
elevation: float = 0.0, # in degrees
radius: float = 3.5,
image_size: tuple = (512, 512),
fov: float = 40.0,
light_intensity: Optional[float] = 5.0,
znear: float = 0.1,
zfar: float = 10.0,
normalize_depth: bool = False,
flags: int = pyrender.constants.RenderFlags.NONE,
return_depth: bool = False,
return_type: Literal['pil', 'ndarray'] = 'pil'
) -> Union[
Image.Image,
np.ndarray,
Tuple[Image.Image, Image.Image],
Tuple[np.ndarray, np.ndarray]
]:
if not isinstance(mesh, (trimesh.Trimesh, trimesh.Scene)):
raise ValueError("mesh must be a trimesh.Trimesh or trimesh.Scene object")
if isinstance(mesh, trimesh.Scene):
mesh = mesh.to_geometry()
normals = mesh.vertex_normals
colors = ((normals + 1.0) / 2.0 * 255).astype(np.uint8)
mesh.visual = trimesh.visual.ColorVisuals(
mesh=mesh,
vertex_colors=colors
)
mesh = trimesh.Scene(mesh)
return render_single_view(
mesh, azimuth, elevation, radius,
image_size, fov, light_intensity, znear, zfar,
normalize_depth, flags,
return_depth, return_type
)
def export_renderings(
images: List[Image.Image],
export_path: str,
fps: int = 36,
loop: int = 0
):
export_type = export_path.split('.')[-1]
if export_type == 'mp4':
export_to_video(
images,
export_path,
fps=fps,
)
elif export_type == 'gif':
duration = 1000 / fps
images[0].save(
export_path,
save_all=True,
append_images=images[1:],
duration=duration,
loop=loop
)
else:
raise ValueError(f'Unknown export type: {export_type}')
def make_grid_for_images_or_videos(
images_or_videos: Union[List[Image.Image], List[List[Image.Image]]],
nrow: int = 4,
padding: int = 0,
pad_value: int = 0,
image_size: tuple = (512, 512),
return_type: Literal['pil', 'ndarray'] = 'pil'
) -> Union[Image.Image, List[Image.Image], np.ndarray]:
if isinstance(images_or_videos[0], Image.Image):
images = [np.array(image.resize(image_size).convert('RGB')) for image in images_or_videos]
images = np.stack(images, axis=0).transpose(0, 3, 1, 2) # [N, C, H, W]
images = torch.from_numpy(images)
image_grid = make_grid(
images,
nrow=nrow,
padding=padding,
pad_value=pad_value,
normalize=False
) # [C, H', W']
image_grid = image_grid.cpu().numpy()
if return_type == 'pil':
image_grid = Image.fromarray(image_grid.transpose(1, 2, 0))
return image_grid
elif isinstance(images_or_videos[0], list) and isinstance(images_or_videos[0][0], Image.Image):
image_grids = []
for i in range(len(images_or_videos[0])):
images = [video[i] for video in images_or_videos]
image_grid = make_grid_for_images_or_videos(
images,
nrow=nrow,
padding=padding,
return_type=return_type
)
image_grids.append(image_grid)
if return_type == 'ndarray':
image_grids = np.stack(image_grids, axis=0)
return image_grids
else:
raise ValueError(f'Unknown input type: {type(images_or_videos[0])}') |