brown-cafe / app.py
Song
temp
8e9c857
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
DrugQA (ZH) — 優化版 FastAPI LINE Webhook (最終版)
整合 RAG 邏輯,包含 LLM 意圖偵測、子查詢分解、Intent-aware 檢索與 Rerank。
此版本專注於效能、可維護性、健壯性與使用者體驗。
"""
# ---------- 環境與快取設定 (應置於最前) ----------
import os
import pathlib
os.environ.setdefault("HF_HOME", "/tmp/hf")
os.environ.setdefault("SENTENCE_TRANSFORMERS_HOME", "/tmp/sentence_transformers")
os.environ.setdefault("XDG_CACHE_HOME", "/tmp/.cache")
for d in (os.getenv("HF_HOME"), os.getenv("SENTENCE_TRANSFORMERS_HOME"), os.getenv("XDG_CACHE_HOME")):
pathlib.Path(d).mkdir(parents=True, exist_ok=True)
# ---------- Python 標準函式庫 ----------
import re
import hmac
import base64
import hashlib
import pickle
import logging
import json
import textwrap
import time
import tenacity
from typing import List, Dict, Any, Optional, Tuple, Union
from functools import lru_cache
from dataclasses import dataclass, field
from contextlib import asynccontextmanager
import unicodedata
# ---------- 第三方函式庫 ----------
import numpy as np
import pandas as pd
from fastapi import FastAPI, Request, Response, HTTPException, status, BackgroundTasks
import uvicorn
import jieba
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer, CrossEncoder
import faiss
import torch
from openai import OpenAI
from tenacity import retry, stop_after_attempt, wait_fixed
import requests
# [MODIFIED] 限制 PyTorch 執行緒數量,避免在 CPU 環境下過度佔用資源
torch.set_num_threads(int(os.getenv("TORCH_NUM_THREADS", "1")))
# ==== CONFIG (從環境變數載入,或使用預設值) ====
# [MODIFIED] 新增環境變數健檢函式
def _require_env(var: str) -> str:
v = os.getenv(var)
if not v:
raise RuntimeError(f"FATAL: Missing required environment variable: {var}")
return v
# [MODIFIED] 檢查 LLM 相關環境變數
def _require_llm_config():
for k in ("LITELLM_BASE_URL", "LITELLM_API_KEY", "LM_MODEL"):
_require_env(k)
CSV_PATH = os.getenv("CSV_PATH", "cleaned_combined.csv")
FAISS_INDEX = os.getenv("FAISS_INDEX", "drug_sentences.index")
SENTENCES_PKL = os.getenv("SENTENCES_PKL", "drug_sentences.pkl")
BM25_PKL = os.getenv("BM25_PKL", "bm25.pkl")
TOP_K_SENTENCES = int(os.getenv("TOP_K_SENTENCES", 15))
PRE_RERANK_K = int(os.getenv("PRE_RERANK_K", 30))
MAX_RERANK_CANDIDATES = int(os.getenv("MAX_RERANK_CANDIDATES", 30))
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "DMetaSoul/Dmeta-embedding-zh")
RERANKER_MODEL = os.getenv("RERANKER_MODEL", "BAAI/bge-reranker-v2-m3")
LLM_API_CONFIG = {
"base_url": os.getenv("LITELLM_BASE_URL"),
"api_key": os.getenv("LITELLM_API_KEY"),
"model": os.getenv("LM_MODEL")
}
LLM_MODEL_CONFIG = {
"max_context_chars": int(os.getenv("MAX_CONTEXT_CHARS", 10000)),
"max_tokens": int(os.getenv("MAX_TOKENS", 1024)),
"temperature": float(os.getenv("TEMPERATURE", 0.0)),
}
INTENT_CATEGORIES = [
"操作 (Administration)", "保存/攜帶 (Storage & Handling)", "副作用/異常 (Side Effects / Issues)",
"劑型相關 (Dosage Form Concerns)", "時間/併用 (Timing & Interaction)", "劑量調整 (Dosage Adjustment)",
"禁忌症/適應症 (Contraindications/Indications)"
]
DRUG_NAME_MAPPING = {
"fentanyl patch": "fentanyl", "spiriva respimat": "spiriva", "augmentin for syrup": "augmentin syrup",
"nitrostat": "nitroglycerin", "ozempic": "ozempic", "niflec": "niflec",
"fosamax": "fosamax", "humira": "humira", "premarin": "premarin", "smecta": "smecta",
}
DISCLAIMER = "本資訊僅供參考,若您對藥物使用有任何疑問,請務務必諮詢您的醫師或藥師。"
PROMPT_TEMPLATES = {
"analyze_query": """
請分析以下使用者問題,並完成以下兩個任務:
1. 將問題分解為1-3個核心的子問題。
2. 從清單中選擇所有相關的意圖分類。
請嚴格以 JSON 格式回覆,包含 'sub_queries' (字串陣列) 和 'intents' (字串陣列) 兩個鍵。
範例: {{"sub_queries": ["子問題一", "子問題二"], "intents": ["分類名稱一", "分類名稱二"]}}
意圖分類清單:
{options}
使用者問題:{query}
""",
"expand_query": """
請根據以下意圖:{intents},擴展這個查詢,加入相關同義詞或術語。
原始查詢:{query}
請僅輸出擴展後的查詢,不需任何額外的解釋或格式。
""",
"final_answer": """
你是一位專業且謹慎的台灣藥師。請嚴格根據「參考資料」回答使用者問題,使用繁體中文。
規則:
所有回答內容必須嚴格依據提供的參考資料,禁止任何形式的捏造或引用外部資訊。
若資料不足以回答,請回覆:「根據提供的資料,無法回答您的問題。」
針對原始查詢,以專業、友善的口吻,提供簡潔但資訊完整的中文繁體回答。
回答字數限制在120字以內。
排版格式:
使用條列式分行呈現,排版需適合LINE對話框顯示。
回覆結尾必須加上指定提醒語句:「如有不適請立即就醫。」
{additional_instruction}
---
參考資料:
{context}
---
使用者問題:{query}
請直接輸出最終的答案:
"""
}
# ---------- 日誌設定 ----------
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
# [新增] 統一字串正規化函式
def _norm(s: str) -> str:
"""統一化字串:NFKC 正規化、轉小寫、移除標點符號與空白。"""
s = unicodedata.normalize("NFKC", s)
return re.sub(r"[^\w\s]", "", s.lower()).strip()
@dataclass
class FusedCandidate:
idx: int
fused_score: float
sem_score: float
bm_score: float
@dataclass
class RerankResult:
idx: int
rerank_score: float
text: str
meta: Dict[str, Any] = field(default_factory=dict)
# ---------- 核心 RAG 邏輯 ----------
class RagPipeline:
def __init__(self):
# [MODIFIED] 不再傳入 AppConfig,直接引用
if not LLM_API_CONFIG["api_key"] or not LLM_API_CONFIG["base_url"]:
raise ValueError("LLM API Key or Base URL is not configured.")
self.llm_client = OpenAI(api_key=LLM_API_CONFIG["api_key"], base_url=LLM_API_CONFIG["base_url"])
# [FIXED] 新增 model_name 屬性
self.model_name = LLM_API_CONFIG["model"]
self.embedding_model = self._load_model(SentenceTransformer, EMBEDDING_MODEL, "embedding")
self.reranker = self._load_model(CrossEncoder, RERANKER_MODEL, "reranker")
self.drug_name_to_ids: Dict[str, List[str]] = {}
self.drug_vocab: Dict[str, set] = {"zh": set(), "en": set()}
self.state = type('state', (), {})()
def _load_model(self, model_class, model_name: str, model_type: str):
device = "cuda" if torch.cuda.is_available() else "cpu"
log.info(f"載入 {model_type} 模型:{model_name}{device}...")
try:
return model_class(model_name, device=device)
except Exception as e:
log.warning(f"載入模型至 {device} 失敗: {e}。嘗試切換至 CPU。")
try:
return model_class(model_name, device="cpu")
except Exception as e_cpu:
log.error(f"切換至 CPU 仍無法載入模型: {model_name}。請確認模型路徑或網路連線。錯誤訊息: {e_cpu}")
raise RuntimeError(f"模型載入失敗: {model_name}")
def load_data(self):
log.info("開始載入資料與模型...")
# [MODIFIED] 增加檔案存在性檢查
for path in [CSV_PATH, FAISS_INDEX, SENTENCES_PKL, BM25_PKL]:
if not pathlib.Path(path).exists():
raise FileNotFoundError(f"必要的資料檔案不存在: {path}")
try:
self.df_csv = pd.read_csv(CSV_PATH, dtype=str).fillna('')
# [MODIFIED] 增加必要欄位檢查
for col in ("drug_name_norm", "drug_id"):
if col not in self.df_csv.columns:
raise KeyError(f"CSV 檔案 '{CSV_PATH}' 中缺少必要欄位: {col}")
# [MODIFIED] 新增更強大的藥名詞典建立邏輯
self.drug_name_to_ids = self._build_drug_name_to_ids()
self._load_drug_name_vocabulary()
log.info("載入 FAISS 索引與句子資料...")
self.state.index = faiss.read_index(FAISS_INDEX)
self.state.faiss_metric = getattr(self.state.index, "metric_type", faiss.METRIC_L2)
if hasattr(self.state.index, "nprobe"):
self.state.index.nprobe = int(os.getenv("FAISS_NPROBE", "16"))
# [新增] 檢查 FAISS 指標類型,若為 IP 則提示
if self.state.faiss_metric == faiss.METRIC_INNER_PRODUCT:
log.info("FAISS 索引使用內積 (IP) 指標,檢索時將自動進行 L2 正規化以實現餘弦相似度。")
with open(SENTENCES_PKL, "rb") as f:
data = pickle.load(f)
self.state.sentences = data["sentences"]
self.state.meta = data["meta"]
log.info("載入 BM25 索引...")
with open(BM25_PKL, "rb") as f:
# 載入整個字典,然後取 'bm25' 這個鍵
bm25_data = pickle.load(f)
self.state.bm25 = bm25_data["bm25"]
if not isinstance(self.state.bm25, BM25Okapi):
raise ValueError("Loaded BM25 is not a BM25Okapi instance.")
except (FileNotFoundError, KeyError) as e:
log.exception(f"資料或索引檔案載入失敗: {e}")
raise RuntimeError(f"資料初始化失敗,請檢查檔案路徑與內容: {e}")
log.info("所有模型與資料載入完成。")
def _find_drug_ids_from_name(self, query: str) -> List[str]:
# [MODIFIED] 新增更強大的藥名詞典建立邏輯
q_norm_parts = set(re.findall(r'[a-z0-9]+|[\u4e00-\u9fff]+', _norm(query)))
drug_ids = set()
for part in q_norm_parts:
if part in self.drug_name_to_ids:
drug_ids.update(self.drug_name_to_ids[part])
return sorted(list(drug_ids))
def _build_drug_name_to_ids(self) -> Dict[str, List[str]]:
mapping = {}
for _, row in self.df_csv.iterrows():
drug_id = row['drug_id']
# 使用 jieba 將中文藥名切分,並將英文名拆分
zh_parts = list(jieba.cut(row['drug_name_zh']))
en_parts = re.findall(r'[a-zA-Z0-9]+', row['drug_name_en'].lower() if row['drug_name_en'] else '')
# 統一使用 _norm 函數處理,以確保與查詢的處理方式一致
norm_parts = re.findall(r'[a-z0-9]+|[\u4e00-\u9fff]+', _norm(row['drug_name_norm']))
all_parts = set(zh_parts + en_parts + norm_parts)
for part in all_parts:
part = part.strip()
if part and len(part) > 1:
mapping.setdefault(part, []).append(drug_id)
# 將 DRUG_NAME_MAPPING 中的別名也加入
for alias, canonical_name in DRUG_NAME_MAPPING.items():
if _norm(canonical_name) in _norm(row['drug_name_norm']):
mapping.setdefault(_norm(alias), []).append(drug_id)
for key in mapping:
mapping[key] = sorted(list(set(mapping[key])))
return mapping
def _load_drug_name_vocabulary(self):
log.info("建立藥名詞庫...")
for _, row in self.df_csv.iterrows():
norm_name = row['drug_name_norm']
words = list(re.findall(r'[a-z0-9]+|[\u4e00-\u9fff]+', norm_name))
for word in words:
if re.search(r'[\u4e00-\u9fff]', word):
self.drug_vocab["zh"].add(word)
else:
self.drug_vocab["en"].add(word)
for alias in DRUG_NAME_MAPPING:
if re.search(r'[\u4e00-\u9fff]', alias):
self.drug_vocab["zh"].add(alias)
else:
self.drug_vocab["en"].add(alias)
for word in self.drug_vocab["zh"]:
try:
if word not in jieba.dt.FREQ:
jieba.add_word(word, freq=2_000_000)
except Exception:
pass
@tenacity.retry(
wait=tenacity.wait_fixed(2),
stop=tenacity.stop_after_attempt(3),
retry=tenacity.retry_if_exception_type(ValueError),
before_sleep=tenacity.before_sleep_log(log, logging.WARNING),
after=tenacity.after_log(log, logging.INFO)
)
def _llm_call(self, messages: List[Dict[str, str]], max_tokens: Optional[int] = None, temperature: Optional[float] = None) -> str:
"""安全地呼叫 LLM API,並處理可能的回應內容為空錯誤。"""
log.info(f"LLM 呼叫開始. 模型: {self.model_name}, max_tokens: {max_tokens}, temperature: {temperature}")
log.info(f"送出的 LLM 提示 (messages): {json.dumps(messages, ensure_ascii=False, indent=2)}")
start_time = time.time()
try:
response = self.llm_client.chat.completions.create(
model=self.model_name,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
)
end_time = time.time()
log.info(f"LLM 收到完整回應: {response.model_dump_json(indent=2)}")
# --- 修正處:當回傳內容為空時,直接回傳空字串,而非拋出 ValueError ---
if not response.choices or not response.choices[0].message.content:
log.warning("LLM 呼叫成功 (200 OK),但回傳內容為空。將回傳空字串。")
return ""
# --- 修正結束 ---
content = response.choices[0].message.content
log.info(f"LLM 呼叫完成,耗時: {end_time - start_time:.2f} 秒。內容長度: {len(content)} 字。")
return content
except Exception as e:
log.error(f"LLM API 呼叫失敗: {e}")
raise
def answer_question(self, q_orig: str) -> str:
start_time = time.time()
log.info(f"===== 處理新查詢: '{q_orig}' =====")
try:
drug_ids = self._find_drug_ids_from_name(q_orig)
if not drug_ids:
log.info("未從查詢中找到相關藥名,直接返回預設訊息。")
return f"未從查詢中找到相關藥名,無法回答您的問題。\n{DISCLAIMER}"
log.info(f"步驟 1/5: 找到藥品 ID: {drug_ids},耗時: {time.time() - start_time:.2f} 秒")
step_start = time.time()
analysis = self._analyze_query(q_orig)
sub_queries, intents = analysis.get("sub_queries", [q_orig]), analysis.get("intents", [])
is_simple_query = self._is_simple_query(sub_queries, intents)
log.info(f"步驟 2/5: 意圖分析完成。子問題: {sub_queries}, 意圖: {intents}。判定為簡單查詢: {is_simple_query}。耗時: {time.time() - step_start:.2f} 秒")
step_start = time.time()
all_candidates = self._retrieve_candidates_for_all_queries(drug_ids, sub_queries, intents)
log.info(f"步驟 3/5: 檢索完成。所有子查詢共找到 {len(all_candidates)} 個不重複候選 chunks。耗時: {time.time() - step_start:.2f} 秒")
step_start = time.time()
if is_simple_query:
log.info("偵測到簡單查詢,跳過 Reranker 步驟。")
final_candidates = all_candidates[:TOP_K_SENTENCES]
reranked_results = [
RerankResult(idx=c.idx, rerank_score=c.fused_score, text=self.state.sentences[c.idx], meta=self.state.meta[c.idx])
for c in final_candidates
]
else:
log.info("偵測到複雜查詢,執行 Reranker。")
reranked_results = self._rerank_with_crossencoder(q_orig, all_candidates)
log.info(f"步驟 4/5: 最終選出 {len(reranked_results)} 個高品質候選。耗時: {time.time() - step_start:.2f} 秒")
step_start = time.time()
# [新增] 根據意圖,將內容進行排序優化
prioritized_results = self._prioritize_context(reranked_results, intents)
context = self._build_context(prioritized_results)
if not context:
log.info("沒有足夠的上下文來回答問題。")
return f"根據提供的資料,無法回答您的問題。{DISCLAIMER}"
prompt = self._make_final_prompt(q_orig, context, intents)
answer = self._llm_call([{"role": "user", "content": prompt}])
# --- 新增處理:如果 LLM 回傳空字串,則回傳預設訊息 ---
if not answer:
log.warning("LLM 回傳的答案為空,將使用預設回覆。")
return f"根據提供的資料,無法回答您的問題。{DISCLAIMER}"
# --- 處理結束 ---
final_answer = f"{answer.strip()}\n\n{DISCLAIMER}"
log.info(f"步驟 5/5: 答案生成完成。答案長度: {len(answer.strip())} 字。耗時: {time.time() - step_start:.2f} 秒")
log.info(f"===== 查詢處理完成,總耗時: {time.time() - start_time:.2f} 秒 =====")
return final_answer
except Exception as e:
log.error(f"處理查詢 '{q_orig}' 時發生嚴重錯誤: {e}", exc_info=True)
return f"處理您的問題時發生內部錯誤,請稍後再試。{DISCLAIMER}"
def _is_simple_query(self, sub_queries: List[str], intents: List[str]) -> bool:
# 如果意圖分析回傳的子查詢數量 <= 1,且意圖分類數量也 <= 1,則判定為簡單問題
return len(sub_queries) <= 1 and len(intents) <= 1
def _analyze_query(self, query: str) -> Dict[str, Any]:
prompt = PROMPT_TEMPLATES["analyze_query"].format(
options="\n".join(f"- {c}" for c in INTENT_CATEGORIES),
query=query
)
response_str = self._llm_call([{"role": "user", "content": prompt}], temperature=0)
return self._safe_json_parse(response_str, default={"sub_queries": [query], "intents": []})
def _retrieve_candidates_for_all_queries(self, drug_ids: List[str], sub_queries: List[str], intents: List[str]) -> List[FusedCandidate]:
drug_ids_set = set(map(str, drug_ids))
if drug_ids_set:
relevant_indices = {i for i, m in enumerate(self.state.meta) if str(m.get("drug_id", "")) in drug_ids_set}
else:
relevant_indices = set(range(len(self.state.meta)))
if not relevant_indices: return []
all_fused_candidates: Dict[int, FusedCandidate] = {}
for sub_q in sub_queries:
expanded_q = self._expand_query_with_llm(sub_q, tuple(intents))
q_emb = self.embedding_model.encode([expanded_q], convert_to_numpy=True).astype("float32")
if self.state.faiss_metric == faiss.METRIC_INNER_PRODUCT:
faiss.normalize_L2(q_emb)
distances, sim_indices = self.state.index.search(q_emb, PRE_RERANK_K)
tokenized_query = list(jieba.cut(expanded_q))
bm25_scores = self.state.bm25.get_scores(tokenized_query)
rel_idx = np.fromiter(relevant_indices, dtype=int)
rel_scores = bm25_scores[rel_idx]
top_rel = rel_idx[np.argsort(rel_scores)[::-1][:PRE_RERANK_K]]
doc_to_bm25_score = {int(i): float(bm25_scores[i]) for i in top_rel}
candidate_scores: Dict[int, Dict[str, float]] = {}
def to_similarity(d: float) -> float:
if self.state.faiss_metric == faiss.METRIC_INNER_PRODUCT:
return float(d)
else:
return 1.0 / (1.0 + float(d))
for i, dist in zip(sim_indices[0], distances[0]):
if i in relevant_indices:
similarity = to_similarity(dist)
candidate_scores[int(i)] = {"sem": float(similarity), "bm": 0.0}
for i, score in doc_to_bm25_score.items():
if i in relevant_indices:
candidate_scores.setdefault(i, {"sem": 0.0, "bm": 0.0})["bm"] = score
if not candidate_scores: continue
keys = list(candidate_scores.keys())
sem_scores = np.array([candidate_scores[k]['sem'] for k in keys])
bm_scores = np.array([candidate_scores[k]['bm'] for k in keys])
def norm(x):
rng = x.max() - x.min()
return (x - x.min()) / (rng + 1e-8) if rng > 0 else np.zeros_like(x)
sem_n, bm_n = norm(sem_scores), norm(bm_scores)
for idx, k in enumerate(keys):
fused_score = sem_n[idx] * 0.6 + bm_n[idx] * 0.4
if k not in all_fused_candidates or fused_score > all_fused_candidates[k].fused_score:
all_fused_candidates[k] = FusedCandidate(
idx=k, fused_score=fused_score, sem_score=sem_scores[idx], bm_score=bm_scores[idx]
)
return sorted(all_fused_candidates.values(), key=lambda x: x.fused_score, reverse=True)
def _expand_query_with_llm(self, query: str, intents: tuple) -> str:
if not intents:
return query
prompt = PROMPT_TEMPLATES["expand_query"].format(intents=list(intents), query=query)
try:
expanded_query = self._llm_call([{"role": "user", "content": prompt}])
if expanded_query and expanded_query.strip():
log.info(f"查詢擴展成功。原始: '{query}', 擴展後: '{expanded_query}'")
return expanded_query
else:
log.warning(f"查詢擴展回傳空內容。原始查詢: '{query}'。將使用原始查詢。")
return query
except Exception as e:
log.error(f"查詢擴展失敗: {e}。原始查詢: '{query}'。將使用原始查詢。")
return query
def _rerank_with_crossencoder(self, query: str, candidates: List[FusedCandidate]) -> List[RerankResult]:
if not candidates: return []
top_candidates = candidates[:MAX_RERANK_CANDIDATES]
pairs = [(query, self.state.sentences[c.idx]) for c in top_candidates]
scores = self.reranker.predict(pairs, show_progress_bar=False)
results = [
RerankResult(idx=c.idx, rerank_score=float(score), text=self.state.sentences[c.idx], meta=self.state.meta[c.idx])
for c, score in zip(top_candidates, scores)
]
return sorted(results, key=lambda x: x.rerank_score, reverse=True)[:TOP_K_SENTENCES]
def _prioritize_context(self, results: List[RerankResult], intents: List[str]) -> List[RerankResult]:
if "副作用/異常 (Side Effects / Issues)" not in intents:
return results
warnings_and_notes = [res for res in results if res.meta.get("section", "").startswith("警語與注意事項")]
adverse_reactions = [res for res in results if res.meta.get("section", "").startswith("不良反應")]
other_results = [res for res in results if res not in warnings_and_notes and res not in adverse_reactions]
prioritized = warnings_and_notes + other_results + adverse_reactions
return prioritized
def _build_context(self, reranked_results: List[RerankResult]) -> str:
context = ""
for res in reranked_results:
if len(context) + len(res.text) > LLM_MODEL_CONFIG["max_context_chars"]: break
context += res.text + "\n\n"
return context.strip()
def _make_final_prompt(self, query: str, context: str, intents: List[str]) -> str:
add_instr = ""
if any(i in intents for i in ["劑量調整 (Dosage Adjustment)", "時間/併用 (Timing & Interaction)"]):
add_instr = "在回答用藥劑量和時間時,務必提醒使用者,醫師開立的藥袋醫囑優先於仿單的一般建議。"
if "保存/攜帶 (Storage & Handling)" in intents:
add_instr += "在回答保存與攜帶問題時,除了仿單內容,請根據常識加入實際情境的提醒,例如提醒需冷藏藥品要用保冷袋攜帶。"
return PROMPT_TEMPLATES["final_answer"].format(
additional_instruction=add_instr, context=context, query=query
)
def _safe_json_parse(self, s: str, default: Any = None) -> Any:
try:
return json.loads(s)
except json.JSONDecodeError:
log.warning(f"無法解析完整 JSON。嘗試從字串中提取: {s[:200]}...")
m = re.search(r'\{.*?\}', s, re.DOTALL)
if m:
try:
return json.loads(m.group(0))
except json.JSONDecodeError:
log.warning(f"提取的 JSON 仍無法解析: {m.group(0)[:100]}...")
return default
# ---------- FastAPI 事件與路由 ----------
class AppConfig:
CHANNEL_ACCESS_TOKEN = _require_env("CHANNEL_ACCESS_TOKEN")
CHANNEL_SECRET = _require_env("CHANNEL_SECRET")
rag_pipeline: Optional[RagPipeline] = None
@asynccontextmanager
async def lifespan(app: FastAPI):
_require_llm_config()
global rag_pipeline
rag_pipeline = RagPipeline()
rag_pipeline.load_data()
log.info("啟動完成,服務準備就緒。")
yield
log.info("服務關閉中。")
app = FastAPI(lifespan=lifespan)
@app.post("/webhook")
async def handle_webhook(request: Request, background_tasks: BackgroundTasks):
signature = request.headers.get("X-Line-Signature")
if not signature:
raise HTTPException(status_code=400, detail="Missing X-Line-Signature")
if not AppConfig.CHANNEL_SECRET:
log.error("CHANNEL_SECRET is not configured.")
raise HTTPException(status_code=500, detail="Server configuration error")
body = await request.body()
try:
hash = hmac.new(AppConfig.CHANNEL_SECRET.encode('utf-8'), body, hashlib.sha256)
expected_signature = base64.b64encode(hash.digest()).decode('utf-8')
except Exception as e:
log.error(f"Failed to generate signature: {e}")
raise HTTPException(status_code=500, detail="Signature generation error")
if not hmac.compare_digest(expected_signature, signature):
raise HTTPException(status_code=403, detail="Invalid signature")
try:
data = json.loads(body.decode('utf-8'))
except json.JSONDecodeError:
raise HTTPException(status_code=400, detail="Invalid JSON body")
for event in data.get("events", []):
if event.get("type") == "message" and event.get("message", {}).get("type") == "text":
reply_token = event.get("replyToken")
user_text = event.get("message", {}).get("text", "").strip()
source = event.get("source", {})
stype = source.get("type")
target_id = source.get("userId") or source.get("groupId") or source.get("roomId")
if reply_token and user_text and target_id:
line_reply(reply_token, "收到您的問題,正在查詢資料庫,請稍候...")
background_tasks.add_task(process_user_query, stype, target_id, user_text)
return Response(status_code=status.HTTP_200_OK)
def process_user_query(source_type: str, target_id: str, user_text: str):
try:
if rag_pipeline:
answer = rag_pipeline.answer_question(user_text)
else:
answer = "系統正在啟動中,請稍後再試。"
line_push_generic(source_type, target_id, answer)
except Exception as e:
log.error(f"背景處理 target_id={target_id} 發生錯誤: {e}", exc_info=True)
line_push_generic(source_type, target_id, f"抱歉,處理時發生未預期的錯誤。{DISCLAIMER}")
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def line_api_call(endpoint: str, data: Dict):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {AppConfig.CHANNEL_ACCESS_TOKEN}"
}
try:
response = requests.post(f"https://api.line.me/v2/bot/message/{endpoint}", headers=headers, json=data, timeout=10)
response.raise_for_status()
except requests.exceptions.RequestException as e:
log.error(f"LINE API ({endpoint}) 呼叫失敗: {e} | Response: {e.response.text if e.response else 'N/A'}")
raise
def line_reply(reply_token: str, text: str):
messages = [{"type": "text", "text": chunk} for chunk in textwrap.wrap(text, 4800, replace_whitespace=False)[:5]]
line_api_call("reply", {"replyToken": reply_token, "messages": messages})
def line_push_generic(source_type: str, target_id: str, text: str):
messages = [{"type": "text", "text": chunk} for chunk in textwrap.wrap(text, 4800, replace_whitespace=False)[:5]]
endpoint = "push"
data = {"to": target_id, "messages": messages}
line_api_call(endpoint, data)
def extract_drug_candidates_from_query(query: str, drug_vocab: dict) -> list:
candidates = set()
q_norm = _norm(query)
for word in re.findall(r"[a-z0-9]+", q_norm):
if word in drug_vocab["en"]:
candidates.add(word)
for token in jieba.cut(q_norm):
if token in drug_vocab["zh"]:
candidates.add(token)
return list(candidates)
# ---------- 執行 ----------
if __name__ == "__main__":
port = int(os.getenv("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)