Spaces:
Building
Building
File size: 11,223 Bytes
eefb74d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# ๐ Agentic Analysis & MCP/ACP Integration Guide
## Overview
This guide explains how **Model Context Protocol (MCP)**, **Agent Context Protocol (ACP)**, and **agentic capabilities** significantly enhance your Dubsway Video AI system with advanced multi-modal analysis and beautiful formatting.
---
## ๐ฏ What MCP/ACP Brings to Your System
### **1. Multi-Modal Analysis**
- **Audio Analysis**: Enhanced transcription with emotion detection and speaker identification
- **Visual Analysis**: Object detection, scene classification, OCR for text in frames
- **Context Integration**: Web search and Wikipedia lookups for deeper understanding
### **2. Agentic Capabilities**
- **Intelligent Reasoning**: LLM-powered analysis that goes beyond basic transcription
- **Tool Integration**: Access to external knowledge sources and analysis tools
- **Context-Aware Summarization**: Understanding cultural references and technical details
### **3. Beautiful Formatting**
- **Comprehensive Reports**: Rich, structured reports with visual elements
- **Enhanced PDFs**: Beautifully formatted PDFs with charts and insights
- **Interactive Elements**: Timestamped key moments and visual breakdowns
---
## ๐๏ธ Architecture Overview
```
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Dubsway Video AI โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Basic Analysisโ โ Enhanced Analysisโ โ Agentic Toolsโ โ
โ โ (Whisper) โ โ (Multi-Modal) โ โ (MCP/ACP) โ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Audio Processingโ โ Visual Analysis โ โ Context โ โ
โ โ - Transcription โ โ - Object Detect โ โ - Web Search โ โ
โ โ - Emotion Detectโ โ - Scene Classifyโ โ - Wikipedia โ โ
โ โ - Speaker ID โ โ - OCR Text โ โ - Sentiment โ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Enhanced Vector โ โ Beautiful โ โ Comprehensiveโ โ
โ โ Store (FAISS) โ โ PDF Reports โ โ Analysis โ โ
โ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
```
---
## ๐ง Key Components
### **1. MultiModalAnalyzer**
```python
class MultiModalAnalyzer:
- analyze_video_frames(): Extract and analyze video frames
- analyze_audio_enhanced(): Enhanced audio with emotion detection
- generate_enhanced_summary(): Agent-powered comprehensive summary
- create_beautiful_report(): Beautifully formatted reports
```
### **2. AgenticVideoProcessor**
```python
class AgenticVideoProcessor:
- process_video_agentic(): Main processing pipeline
- _perform_enhanced_analysis(): Multi-modal analysis
- _generate_comprehensive_report(): Rich report generation
- _store_enhanced_embeddings(): Enhanced vector storage
```
### **3. MCPToolManager**
```python
class MCPToolManager:
- web_search(): Real-time web search for context
- wikipedia_lookup(): Detailed information lookup
- sentiment_analysis(): Advanced sentiment analysis
- topic_extraction(): Intelligent topic modeling
```
---
## ๐ Enhanced Analysis Features
### **Audio Analysis**
- โ
**Transcription**: Accurate speech-to-text with confidence scores
- โ
**Language Detection**: Automatic language identification
- โ
**Emotion Detection**: Sentiment analysis of speech content
- โ
**Speaker Identification**: Multi-speaker detection and separation
- โ
**Audio Quality Assessment**: Background noise and clarity analysis
### **Visual Analysis**
- โ
**Object Detection**: Identify objects, people, and scenes
- โ
**Scene Classification**: Categorize video content types
- โ
**OCR Text Recognition**: Extract text from video frames
- โ
**Visual Sentiment**: Analyze visual mood and atmosphere
- โ
**Key Frame Extraction**: Identify important visual moments
### **Context Integration**
- โ
**Web Search**: Real-time information lookup
- โ
**Wikipedia Integration**: Detailed topic explanations
- โ
**Cultural Context**: Understanding references and context
- โ
**Technical Analysis**: Domain-specific insights
- โ
**Trend Analysis**: Current relevance and trends
---
## ๐จ Beautiful Report Formatting
### **Sample Enhanced Report Structure**
```markdown
# ๐น Video Analysis Report
## ๐ Overview
- Duration: 15:30 seconds
- Resolution: 1920x1080
- Language: English (95% confidence)
## ๐ต Audio Analysis
### Transcription Summary
Comprehensive transcription with emotion detection...
### Key Audio Segments
- **0:00 - 0:15**: Introduction with positive sentiment
- **0:15 - 0:45**: Main content with neutral tone
- **0:45 - 1:00**: Conclusion with enthusiastic delivery
## ๐ฌ Visual Analysis
### Scene Breakdown
- **0:00s**: Office setting with presenter
- **0:15s**: Screen sharing with technical diagrams
- **0:30s**: Audience interaction scene
### Key Visual Elements
- **Person**: appears 45 times (main presenter)
- **Computer**: appears 12 times (presentation device)
- **Chart**: appears 8 times (data visualization)
## ๐ฏ Key Insights
### Topics Covered
- Artificial Intelligence
- Machine Learning
- Business Applications
- Future Technology
### Sentiment Analysis
- **Positive**: 65%
- **Neutral**: 25%
- **Negative**: 10%
### Important Moments
- **0:30s**: Key insight about AI applications
- **1:15s**: Technical demonstration
- **2:00s**: Audience engagement peak
```
---
## ๐ Integration Steps
### **Step 1: Install Dependencies**
```bash
pip install opencv-python pillow duckduckgo-search wikipedia-api easyocr
```
### **Step 2: Update Your Worker**
```python
# In worker/daemon.py, replace:
transcription, summary = await whisper_llm.analyze(video_url, user_id, db)
# With:
transcription, summary = await agentic_integration.analyze_with_agentic_capabilities(video_url, user_id, db)
```
### **Step 3: Enhanced PDF Generation**
```python
# The system automatically generates enhanced PDFs with:
- Beautiful formatting
- Visual charts and graphs
- Timestamped key moments
- Comprehensive insights
```
### **Step 4: Monitor Enhanced Vector Store**
```python
# Enhanced embeddings include:
- Multi-modal metadata
- Topic classifications
- Sentiment scores
- Context information
```
---
## ๐ฏ Benefits & Use Cases
### **Content Creators**
- **Deep Analysis**: Understand audience engagement patterns
- **Content Optimization**: Identify what works best
- **Trend Analysis**: Stay current with relevant topics
### **Business Intelligence**
- **Meeting Analysis**: Extract key insights from presentations
- **Training Assessment**: Evaluate training video effectiveness
- **Market Research**: Analyze competitor content
### **Educational Institutions**
- **Lecture Analysis**: Comprehensive course content breakdown
- **Student Engagement**: Track learning patterns
- **Content Quality**: Assess educational material effectiveness
### **Research & Development**
- **Technical Documentation**: Extract technical insights
- **Patent Analysis**: Understand innovation patterns
- **Knowledge Management**: Build comprehensive knowledge bases
---
## ๐ฎ Future Enhancements
### **Planned Features**
- **Real-time Analysis**: Live video processing capabilities
- **Custom Models**: Domain-specific analysis models
- **Interactive Reports**: Web-based interactive analysis
- **API Integration**: Third-party tool integrations
- **Advanced RAG**: Enhanced retrieval-augmented generation
### **Advanced Capabilities**
- **Multi-language Support**: Enhanced international content analysis
- **Industry-specific Analysis**: Specialized models for different domains
- **Predictive Analytics**: Content performance prediction
- **Automated Insights**: AI-generated recommendations
---
## ๐ Performance Considerations
### **Processing Time**
- **Basic Analysis**: 1-2 minutes per video
- **Enhanced Analysis**: 3-5 minutes per video
- **Agentic Analysis**: 5-10 minutes per video
### **Resource Requirements**
- **GPU**: Recommended for faster processing
- **Memory**: 8GB+ RAM for enhanced analysis
- **Storage**: Additional space for enhanced vector stores
### **Scalability**
- **Parallel Processing**: Multiple videos can be processed simultaneously
- **Caching**: Intelligent caching of expensive analyses
- **Fallback Mechanisms**: Graceful degradation to basic analysis
---
## ๐ ๏ธ Troubleshooting
### **Common Issues**
1. **Memory Errors**: Reduce batch size or enable GPU processing
2. **Model Loading**: Ensure all dependencies are installed
3. **API Limits**: Configure rate limiting for external APIs
4. **File Formats**: Ensure video files are in supported formats
### **Performance Optimization**
1. **GPU Acceleration**: Enable CUDA for faster processing
2. **Model Caching**: Cache frequently used models
3. **Parallel Processing**: Process multiple components simultaneously
4. **Resource Monitoring**: Monitor system resources during processing
---
## ๐ Additional Resources
- **LangChain Documentation**: https://python.langchain.com/
- **OpenAI API Guide**: https://platform.openai.com/docs
- **Hugging Face Models**: https://huggingface.co/models
- **FAISS Documentation**: https://github.com/facebookresearch/faiss
---
*This enhanced system transforms your Dubsway Video AI from a basic transcription tool into a comprehensive, intelligent video analysis platform with beautiful formatting and deep insights.* |